cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046353 Odd composite numbers whose sum of prime factors is palindromic (counted with multiplicity).

This page as a plain text file.
%I A046353 #17 Apr 28 2018 07:44:27
%S A046353 9,15,27,45,57,85,121,123,259,305,351,403,413,415,483,495,575,597,627,
%T A046353 639,663,687,689,705,717,735,807,875,893,931,935,985,989,1073,1135,
%U A046353 1183,1203,1207,1263,1285,1293,1331,1353,1383,1385,1407,1473,1505,1545
%N A046353 Odd composite numbers whose sum of prime factors is palindromic (counted with multiplicity).
%H A046353 John Cerkan, <a href="/A046353/b046353.txt">Table of n, a(n) for n = 1..10000</a>
%e A046353 689 = 13 * 53 -> 13 + 53 = 66 and 66 is a palindrome.
%t A046353 palQ[n_]:=Reverse[x=IntegerDigits[n]]==x; Select[Range[9,1545,2],!PrimeQ[#]&&palQ[Total[Times@@@FactorInteger[#]]]&] (* _Jayanta Basu_, Jun 05 2013 *)
%o A046353 (Python)
%o A046353 from sympy import factorint
%o A046353 def is_046353(n):
%o A046353     if n % 2 == 0: return False
%o A046353     f = factorint(n)
%o A046353     if sum([f[i] for i in f]) < 2: return False
%o A046353     sfa = sum([i*f[i] for i in f])
%o A046353     if sfa == int(str(sfa)[::-1]): return True
%o A046353     return False # _John Cerkan_, Apr 24 2018
%Y A046353 Cf. A046352, A046354.
%K A046353 nonn,base
%O A046353 1,1
%A A046353 _Patrick De Geest_, Jun 15 1998
%E A046353 Name clarified and offset changed by _John Cerkan_, Apr 24 2018