cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046365 Composite palindromes whose sum of prime factors is prime (counted with multiplicity).

This page as a plain text file.
%I A046365 #18 Jun 22 2021 11:35:34
%S A046365 6,22,88,99,202,252,333,414,424,454,464,595,686,747,777,808,838,848,
%T A046365 858,909,1001,1551,1771,2442,3553,4114,5335,5775,6336,6996,8008,8228,
%U A046365 9009,9559,9669,9889,12121,14241,16261,16761,17171,18081,18381,20102,20602,21012
%N A046365 Composite palindromes whose sum of prime factors is prime (counted with multiplicity).
%H A046365 Michael S. Branicky, <a href="/A046365/b046365.txt">Table of n, a(n) for n = 1..10000</a>
%F A046365 A046363 INTERSECT A002113. - _R. J. Mathar_, Sep 09 2015
%t A046365 Select[Range[20125], !PrimeQ[#] && Reverse[x=IntegerDigits[#]] == x && PrimeQ[Total[Times@@@FactorInteger[#]]]&] (* _Jayanta Basu_, May 29 2013 *)
%o A046365 (Python)
%o A046365 from itertools import product
%o A046365 from sympy import factorint, isprime
%o A046365 def pals(d, base=10): # all d-digit palindromes
%o A046365     digits = "".join(str(i) for i in range(base))
%o A046365     for p in product(digits, repeat=d//2):
%o A046365         if d > 1 and p[0] == "0": continue
%o A046365         left = "".join(p); right = left[::-1]
%o A046365         for mid in [[""], digits][d%2]: yield int(left + mid + right)
%o A046365 def ok(pal):
%o A046365     f = factorint(pal); return len(f)>1 and isprime(sum(p*f[p] for p in f))
%o A046365 print(list(filter(ok, (p for d in range(1, 6) for p in pals(d) if ok(p))))) # _Michael S. Branicky_, Jun 22 2021
%Y A046365 Cf. A046363, A046364.
%K A046365 nonn,base
%O A046365 1,1
%A A046365 _Patrick De Geest_, Jun 15 1998
%E A046365 a(45) and beyond from _Michael S. Branicky_, Jun 22 2021