This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046386 #44 Jan 05 2025 19:44:04 %S A046386 210,330,390,462,510,546,570,690,714,770,798,858,870,910,930,966,1110, %T A046386 1122,1155,1190,1218,1230,1254,1290,1302,1326,1330,1365,1410,1430, %U A046386 1482,1518,1554,1590,1610,1722,1770,1785,1794,1806,1830,1870,1914,1938,1974 %N A046386 Products of exactly four distinct primes. %C A046386 A squarefree subsequence of A033993. Numbers like 420 = 2^2*3*5*7 with at least one prime exponent greater than 1 in the prime signature are excluded here. - _R. J. Mathar_, Apr 03 2011 %C A046386 Numbers such that omega(n) = bigomega(n) = 4. - _Michel Marcus_, Dec 15 2015 %H A046386 T. D. Noe, <a href="/A046386/b046386.txt">Table of n, a(n) for n = 1..10000</a> %F A046386 Intersection of A014613 (product of 4 primes) and A033993 (divisible by 4 distinct primes). - _M. F. Hasler_, Mar 24 2022 %e A046386 210 = 2*3*5*7; %e A046386 330 = 2*3*5*11; %e A046386 390 = 2*3*5*13; %e A046386 462 = 2*3*7*11. %t A046386 fQ[n_] := Last /@ FactorInteger[n] == {1, 1, 1, 1}; Select[ Range[2000], fQ[ # ] &] (* _Robert G. Wilson v_, Aug 04 2005 *) %t A046386 Select[Range[2000],PrimeNu[#]==PrimeOmega[#]==4&] (* _Harvey P. Dale_, Jan 05 2025 *) %o A046386 (PARI) is(n)=factor(n)[,2]==[1,1,1,1]~ \\ _Charles R Greathouse IV_, Sep 17 2015 %o A046386 (PARI) is(n) = omega(n)==4 && bigomega(n)==4 \\ _Hugo Pfoertner_, Dec 18 2018 %o A046386 (PARI) list(lim)=my(v=List()); forprime(p=2,sqrtnint(lim\=1,4), forprime(q=p+1,sqrtnint(lim\p,3), forprime(r=q+2,sqrtint(lim\p\q), my(t=p*q*r); forprime(s=r+2,lim\t, listput(v,t*s))))); Set(v) \\ _Charles R Greathouse IV_, Dec 05 2024 %o A046386 (Python) %o A046386 from math import isqrt %o A046386 from sympy import primepi, primerange, integer_nthroot %o A046386 def A046386(n): %o A046386 def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1),1) for b,m in enumerate(primerange(k+1,integer_nthroot(x//k,3)[0]+1),a+1) for c,r in enumerate(primerange(m+1,isqrt(x//(k*m))+1),b+1))) %o A046386 def bisection(f,kmin=0,kmax=1): %o A046386 while f(kmax) > kmax: kmax <<= 1 %o A046386 while kmax-kmin > 1: %o A046386 kmid = kmax+kmin>>1 %o A046386 if f(kmid) <= kmid: %o A046386 kmax = kmid %o A046386 else: %o A046386 kmin = kmid %o A046386 return kmax %o A046386 return bisection(f) # _Chai Wah Wu_, Aug 29 2024 %Y A046386 Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885. %Y A046386 Cf. A001221 (omega), A001222 (bigomega), A014613 (bigomega(N) = 4) and A033993 (omega(N) = 4). %Y A046386 Cf. A046402 (4 palindromic prime factors). %K A046386 nonn,easy %O A046386 1,1 %A A046386 _Patrick De Geest_, Jun 15 1998