This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046387 #36 Aug 31 2024 01:57:33 %S A046387 2310,2730,3570,3990,4290,4830,5610,6006,6090,6270,6510,6630,7410, %T A046387 7590,7770,7854,8610,8778,8970,9030,9282,9570,9690,9870,10010,10230, %U A046387 10374,10626,11130,11310,11730,12090,12210,12390,12558,12810,13090,13110 %N A046387 Products of exactly 5 distinct primes. %C A046387 Subsequence of A051270. 4620 = 2^2*3*5*7*11 is in A051270 but not in here, for example. - _R. J. Mathar_, Nov 10 2014 %H A046387 T. D. Noe, <a href="/A046387/b046387.txt">Table of n, a(n) for n = 1..10000</a> %e A046387 a(1) = 2310 = 2 * 3 * 5 * 7 * 11 = A002110(5) = 5#. %e A046387 a(2) = 2730 = 2 * 3 * 5 * 7 * 13. %e A046387 a(3) = 3570 = 2 * 3 * 5 * 7 * 17. %e A046387 a(10) = 6006 = 2 * 3 * 7 * 11 * 13. %p A046387 A046387 := proc(n) %p A046387 option remember; %p A046387 local a; %p A046387 if n = 1 then %p A046387 2*3*5*7*11 ; %p A046387 else %p A046387 for a from procname(n-1)+1 do %p A046387 if A001221(a)= 5 and issqrfree(a) then %p A046387 return a; %p A046387 end if; %p A046387 end do: %p A046387 end if; %p A046387 end proc: # _R. J. Mathar_, Oct 13 2019 %t A046387 f5Q[n_]:=Last/@FactorInteger[n]=={1, 1, 1, 1, 1}; lst={};Do[If[f5Q[n], AppendTo[lst, n]], {n, 8!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Aug 26 2008 *) %o A046387 (PARI) is(n)=factor(n)[,2]==[1,1,1,1,1]~ \\ _Charles R Greathouse IV_, Sep 17 2015 %o A046387 (PARI) is(n)= omega(n)==5 && bigomega(n)==5 \\ _Hugo Pfoertner_, Dec 18 2018 %o A046387 (Python) %o A046387 from math import isqrt, prod %o A046387 from sympy import primerange, integer_nthroot, primepi %o A046387 def A046387(n): %o A046387 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A046387 def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,5))) %o A046387 def bisection(f,kmin=0,kmax=1): %o A046387 while f(kmax) > kmax: kmax <<= 1 %o A046387 while kmax-kmin > 1: %o A046387 kmid = kmax+kmin>>1 %o A046387 if f(kmid) <= kmid: %o A046387 kmax = kmid %o A046387 else: %o A046387 kmin = kmid %o A046387 return kmax %o A046387 return bisection(f) # _Chai Wah Wu_, Aug 30 2024 %Y A046387 Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885. %Y A046387 Cf. A000040, A000961, A001221, A005117, A000977, A002110, A006881, A007304, A007774, A033992, A033993, A046386. %Y A046387 Cf. A014614, A046403, A051270. %K A046387 easy,nonn %O A046387 1,1 %A A046387 _Patrick De Geest_, Jun 15 1998 %E A046387 Entry revised by _N. J. A. Sloane_, Apr 10 2006