This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046388 #94 Sep 10 2024 14:22:23 %S A046388 15,21,33,35,39,51,55,57,65,69,77,85,87,91,93,95,111,115,119,123,129, %T A046388 133,141,143,145,155,159,161,177,183,185,187,201,203,205,209,213,215, %U A046388 217,219,221,235,237,247,249,253,259,265,267,287,291,295,299,301,303 %N A046388 Odd numbers of the form p*q where p and q are distinct primes. %C A046388 These are the odd squarefree semiprimes. %C A046388 These numbers k have the property that k is a Fermat pseudoprime for at least two bases 1 < b < k - 1. That is, b^(k - 1) == 1 (mod k). See sequence A175101 for the number of bases. - _Karsten Meyer_, Dec 02 2010 %H A046388 Amiram Eldar, <a href="/A046388/b046388.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe) %F A046388 Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 - P(2*s)) + 1/4^s - P(s)/2^s, for s>1, where P is the prime zeta function. - _Amiram Eldar_, Nov 21 2020 %t A046388 max = 300; A046388 = Sort@Flatten@Table[Prime[m] Prime[n], {n, 3, Ceiling[PrimePi[max/3]]}, {m, 2, n - 1}]; Select[A046388, # < max &] (* _Alonso del Arte_ based on _Robert G. Wilson v_'s program for A006881, Oct 24 2011 *) %o A046388 (Haskell) %o A046388 a046388 n = a046388_list !! (n-1) %o A046388 a046388_list = filter ((== 2) . a001221) a056911_list %o A046388 -- _Reinhard Zumkeller_, Jan 02 2014 %o A046388 (PARI) isok(n) = (n % 2) && (bigomega(n) == 2) && (omega(n)==2); \\ _Michel Marcus_, Feb 05 2015 %o A046388 (Python) %o A046388 from sympy import factorint %o A046388 def ok(n): %o A046388 if n < 2 or n%2 == 0: return False %o A046388 f = factorint(n) %o A046388 return len(f) == 2 and sum(f.values()) == 2 %o A046388 print([k for k in range(304) if ok(k)]) # _Michael S. Branicky_, May 03 2022 %o A046388 (Python) %o A046388 from math import isqrt %o A046388 from sympy import primepi, primerange %o A046388 def A046388(n): %o A046388 if n == 1: return 15 %o A046388 def f(x): return int(n-1+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1))) %o A046388 def bisection(f,kmin=0,kmax=1): %o A046388 while f(kmax) > kmax: kmax <<= 1 %o A046388 while kmax-kmin > 1: %o A046388 kmid = kmax+kmin>>1 %o A046388 if f(kmid) <= kmid: %o A046388 kmax = kmid %o A046388 else: %o A046388 kmin = kmid %o A046388 return kmax %o A046388 return bisection(f,n,n) # _Chai Wah Wu_, Sep 10 2024 %Y A046388 Intersection of A005117 and A046315, or equally, of A005408 and A006881, or of A001358 and A056911. %Y A046388 Union of A080774 and A190299, which the latter is the union of A131574 and A016105. %Y A046388 Subsequence of A024556 and of A225375. %Y A046388 Cf. A353481 (characteristic function). %Y A046388 Cf. A001221, A046404, A056911, A175101. %Y A046388 Different from A056913, A098905, A225375. %K A046388 nonn %O A046388 1,1 %A A046388 _Patrick De Geest_, Jun 15 1998 %E A046388 I removed some ambiguity in the definition and edited the entry, merging in some material from A146166. - _N. J. A. Sloane_, May 09 2013