This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046389 #29 Oct 18 2024 11:43:04 %S A046389 105,165,195,231,255,273,285,345,357,385,399,429,435,455,465,483,555, %T A046389 561,595,609,615,627,645,651,663,665,705,715,741,759,777,795,805,861, %U A046389 885,897,903,915,935,957,969,987,1001,1005,1015,1023,1045,1065,1085 %N A046389 Products of exactly three distinct odd primes. %C A046389 The old name was "Odd numbers with exactly 3 distinct prime factors", which is slightly ambiguous, since it might be interpreted to include 315 = 3^2*5*7. Cf. A278569. - _N. J. A. Sloane_, Nov 27 2016 %H A046389 T. D. Noe, <a href="/A046389/b046389.txt">Table of n, a(n) for n=1..1000</a> %t A046389 f[n_] := OddQ[n] && Last/@FactorInteger[n]=={1,1,1}; lst={}; Do[If[f[n], AppendTo[lst,n]], {n, 2000}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 23 2009 *) %o A046389 (PARI) list(lim)=my(v=List(), t); forprime(p=3, lim^(1/3), forprime(q=p+1, sqrt(lim\p), t=p*q; forprime(r=q+1, lim\t, listput(v, t*r)))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 26 2011 %o A046389 (Python) %o A046389 from math import isqrt %o A046389 from sympy import primepi, integer_nthroot, primerange %o A046389 def A046389(n): %o A046389 def bisection(f,kmin=0,kmax=1): %o A046389 while f(kmax) > kmax: kmax <<= 1 %o A046389 while kmax-kmin > 1: %o A046389 kmid = kmax+kmin>>1 %o A046389 if f(kmid) <= kmid: %o A046389 kmax = kmid %o A046389 else: %o A046389 kmin = kmid %o A046389 return kmax %o A046389 def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))) %o A046389 return bisection(f,n,n) # _Chai Wah Wu_, Sep 10 2024 %Y A046389 Cf. A046316, A046405, A007304, A278569. %K A046389 nonn %O A046389 1,1 %A A046389 _Patrick De Geest_, Jun 15 1998 %E A046389 Name clarified by _N. J. A. Sloane_, Nov 27 2016