This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046391 #23 Mar 01 2023 11:04:08 %S A046391 15015,19635,21945,23205,25935,26565,31395,33495,33915,35805,36465, %T A046391 39585,40755,41055,42315,42735,45885,47355,49335,49665,50505,51051, %U A046391 51765,53295,54285,55335,55965,57057,57855,58695,61215,61845,62205 %N A046391 Odd numbers with exactly 5 distinct prime factors. %H A046391 Karl-Heinz Hofmann, <a href="/A046391/b046391.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe) %e A046391 50505 = 3 * 5 * 7 * 13 * 37. %p A046391 isA046391 := proc(n) %p A046391 type(n,'odd') and (A001221(n) = 5 ) ; %p A046391 end proc: %p A046391 for n from 1 do %p A046391 if isA046391(n) then %p A046391 print(n); %p A046391 end if; %p A046391 end do: # _R. J. Mathar_, Nov 10 2014 %t A046391 f[n_]:=Last/@FactorInteger[n]=={1,1,1,1,1}&&FactorInteger[n][[1,1]]>2; lst={};Do[If[f[n],AppendTo[lst,n]],{n,9!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Nov 23 2009 *) %o A046391 (Python) %o A046391 from sympy import primefactors, factorint %o A046391 print([n for n in range(1, 100000, 2) if len(primefactors(n)) == 5 and max(list(factorint(n).values())) < 2]) # _Karl-Heinz Hofmann_, Mar 01 2023 %Y A046391 Cf. A046318, A046407. %Y A046391 Intersection of A051270 and A005408. %K A046391 nonn %O A046391 1,1 %A A046391 _Patrick De Geest_, Jun 15 1998