This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046397 #16 Jun 17 2024 15:38:09 %S A046397 22444422,24266242,26588562,35888853,36399363,43777734,47199174, %T A046397 51066015,53588535,53888835,55233255,59911995,60066006,62588526, %U A046397 62700726,62888826,81699618,87788778,89433498,122434221,202040202 %N A046397 Palindromes which are the product of exactly 7 distinct primes. %C A046397 The original name "Palindromes with exactly 7 distinct prime factors" did not exclude that one or more of the factors occurred to a higher power: this is sequence A373467. As the listed data show, terms of this sequence must be squarefree. - _M. F. Hasler_, Jun 06 2024 %H A046397 Robert Israel, <a href="/A046397/b046397.txt">Table of n, a(n) for n = 1..10000</a> %e A046397 The first two palindromes with 7 distinct prime factors are 20522502 = 2 * 3^2 * 7 * 11 * 13 * 17 * 67 and 21033012 = 2^2 * 3 * 7 * 11 * 13 * 17 * 103, but these are excluded since one of the prime factors occurs to a higher power. %e A046397 a(1) = 22444422 = 2 * 3 * 7 * 11 * 13 * 37 * 101, which is squarefree, is therefore the first term of this sequence. %p A046397 digrev:= proc(n) local L,i; %p A046397 L:= convert(n,base,10); %p A046397 add(L[-i]*10^(i-1),i=1..nops(L)) %p A046397 end proc: %p A046397 filter:= proc(n) local F; %p A046397 F:= ifactors(n)[2]; %p A046397 nops(F) = 7 and map(t -> t[2],F)=[1$7] %p A046397 end proc: %p A046397 Res:= NULL: %p A046397 count:= 0: %p A046397 for d from 2 while count < 100 do %p A046397 if d::even then %p A046397 m:= d/2; %p A046397 for n from 10^(m-1) to 10^m-1 while count < 100 do %p A046397 v:= n*10^m+digrev(n); %p A046397 if filter(v) then count:= count+1; Res:= Res, v; fi; %p A046397 od; %p A046397 else %p A046397 m:= (d-1)/2; %p A046397 for n from 10^(m-1) to 10^m-1 while count < 100 do %p A046397 for y from 0 to 9 while count < 100 do %p A046397 v:= n*10^(m+1)+y*10^m+digrev(n); %p A046397 if filter(v) then count:= count+1; Res:= Res, v; fi; %p A046397 od od %p A046397 fi %p A046397 od: %p A046397 Res; # _Robert Israel_, Jan 20 2020 %o A046397 (PARI) A046397_upto(N, start=vecprod(primes(7)), num_fact=7)={ my(L=List()); is_A002113(start)&& start--; while(N >= start = nxt_A002113(start), omega(start)==num_fact && issquarefree(start) && listput(L, start)); L} \\ _M. F. Hasler_, Jun 06 2024 %Y A046397 Cf. A046333 (similar but prime factors counted with multiplicity), A373467 (similar but counting just the distinct prime divisors). %Y A046397 Cf. A002113 (palindromes), A123321 (products of 7 distinct primes), A176655 (numbers with omega = 7 distinct prime divisors). %K A046397 nonn,base %O A046397 1,1 %A A046397 _Patrick De Geest_, Jun 15 1998