This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046447 #27 Apr 21 2025 13:22:37 %S A046447 1,4,8,9,16,25,27,32,39,49,64,69,81,119,121,125,128,129,159,219,243, %T A046447 249,256,259,329,339,343,403,429,469,507,512,625,669,679,729,795,1024, %U A046447 1207,1309,1329,1331,1533,1547,1587,1589,1703,2023,2048,2097,2187,2319 %N A046447 Apart from initial term, composite numbers with the property that the concatenation of their prime factors is a palindrome. %C A046447 Prime factors considered with multiplicity. - _Harvey P. Dale_, Apr 20 2025 %H A046447 Reinhard Zumkeller, <a href="/A046447/b046447.txt">Table of n, a(n) for n = 1..1000</a> %e A046447 81 is a term because 81 = 3 * 3 * 3 * 3 -> 3333 is palindromic. %t A046447 concat[n_]:=Flatten[Table[IntegerDigits[First[n]],{Last[n]}]]; palQ[n_]:= Module[{x=Flatten[concat/@FactorInteger[n]]},x==Reverse[x]&&!PrimeQ[n]]; Select[Range[2500],palQ] (* _Harvey P. Dale_, May 24 2011 *) %t A046447 cpfpQ[n_]:=PalindromeQ[FromDigits[Flatten[IntegerDigits/@Flatten[PadRight[{},#[[2]],#[[1]]]&/@FactorInteger[n]]]]]; Join[{1},Select[Range[2500],CompositeQ[ #]&&cpfpQ[#]&]] (* _Harvey P. Dale_, Apr 20 2025 *) %o A046447 (Haskell) %o A046447 a046447 n = a046447_list !! (n-1) %o A046447 a046447_list = 1 : filter f [1..] where %o A046447 f x = length ps > 1 && ps' == reverse ps' %o A046447 where ps' = concatMap show ps; ps = a027746_row x %o A046447 -- _Reinhard Zumkeller_, May 02 2014 %o A046447 (Python) %o A046447 from sympy import factorint, isprime %o A046447 A046447_list = [1] %o A046447 for n in range(4, 10**6): %o A046447 if not isprime(n): %o A046447 s = ''.join([str(p)*e for p, e in sorted(factorint(n).items())]) %o A046447 if s == s[::-1]: %o A046447 A046447_list.append(n) # _Chai Wah Wu_, Jan 03 2015 %Y A046447 Cf. A046448, A046449, A046450. %Y A046447 Cf. A027746, A018252, A136522, A002113. %K A046447 nonn,nice,base %O A046447 1,2 %A A046447 _Patrick De Geest_, Jul 15 1998 %E A046447 Definition slightly modified by _Harvey P. Dale_, Apr 20 2025