This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046452 #30 Oct 15 2019 12:00:23 %S A046452 8,27,125,343,429,507,795,1309,1331,1533,1547,1587,2023,2097,3633, %T A046452 3729,3897,5289,5295,5547,6597,7833,8029,8427,9583,9795,12207,12795, %U A046452 13489,13573,14133,14147,14295,15463,15549,15987,16233,17295,20667,22139,28273,28609,28847,28951 %N A046452 Numbers that are the product of 3 prime factors whose concatenation is a palindrome. %C A046452 Sequence is the intersection of A046447 and A014612 without the initial term. - _Charles R Greathouse IV_, Apr 23 2010 %C A046452 Apart from a(1) all terms are odd. Apart from a(3) 5 divides a(n) if and only if 15 divides a(n). - _Charles R Greathouse IV_, Jan 04 2013 %H A046452 Robert Israel, <a href="/A046452/b046452.txt">Table of n, a(n) for n = 1..2292</a> %e A046452 14133 = 3 * 7 * 673 -> 37673 is palindromic. %p A046452 Nmax:= 10000; # to get all a(n) <= Nmax %p A046452 R:= {8}: %p A046452 for i from 2 do %p A046452 a:= ithprime(i); %p A046452 if a^3 > Nmax then break end if; %p A046452 m:= length(a); tm:= 10^m; %p A046452 al:= convert(a,base,10); %p A046452 ar:= add(10^(m-k)*al[k],k=1..m); %p A046452 for j from i do %p A046452 b:= ithprime(j); %p A046452 if a*b^2 > Nmax then break end if; %p A046452 bl:= convert(b,base,10); %p A046452 k0:= ceil((b-ar)/tm); %p A046452 for k from k0 do %p A046452 c:= ar + k*tm; %p A046452 if a*b*c > Nmax then break end if; %p A046452 if not isprime(c) then next end if; %p A046452 L:= [op(convert(c,base,10)),op(bl),op(al)]; %p A046452 if ListTools:-Reverse(L)=L then %p A046452 R:= R union {a*b*c} %p A046452 end if; %p A046452 end do %p A046452 end do %p A046452 end do: %p A046452 R; # _Robert Israel_, Jan 05 2013 %t A046452 pfpQ[n_]:=Module[{c=Flatten[IntegerDigits/@Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]]},c==Reverse[c]]; Select[Range[30000],PrimeOmega[#] == 3&&pfpQ[#]&] (* _Harvey P. Dale_, Jan 05 2013 *) %o A046452 (PARI) ispal(n)=n=digits(n);for(i=1,#n\2,if(n[i]!=n[#n+1-i],return(0)));1 %o A046452 list(lim)=my(v=List([8]),t);forprime(p=3,lim\9, forprime(q=3,min(lim\(3*p),p), t=p*q; forprime(r=3,min(lim\t,q), if(ispal(eval(Str(r,q,p))), listput(v,t*r))))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jan 04 2013 %Y A046452 Cf. A046447. %K A046452 nonn,base %O A046452 1,1 %A A046452 _Patrick De Geest_, Jul 15 1998 %E A046452 Missing a(16) from _Charles R Greathouse IV_ on the advice of _Harvey P. Dale_, Jan 04 2013