This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046461 #49 Oct 07 2023 21:39:09 %S A046461 3,4,7,34,97 %N A046461 Numbers k such that concatenation of numbers from 1 to k is a semiprime. %C A046461 From _Sean A. Irvine_, Apr 15 2010, updated Oct 08 2015: (Start) %C A046461 5053 and 9706 are definite terms of the sequence. %C A046461 The next potential term is 1651. %C A046461 A007908(1651) is composite, but has no known prime factor, and its least prime factor likely has at least 45 digits. (End) %C A046461 If k is a multiple of 10, then k is not a term. - _Chai Wah Wu_, Jan 22 2020 %C A046461 From _Jon E. Schoenfield_, Oct 07 2023: (Start) %C A046461 k cannot be a term if any of the following are true: %C A046461 4|k and k > 4 (2*2 would divide the concatenation) %C A046461 6|k or 6|k-2 (2*3 " " " " ) %C A046461 9|k or 9|k-8 (3*3 " " " " ) %C A046461 10|k (2*5 " " " " ) %C A046461 15|k or 15|k-5 (3*5 " " " " ) %C A046461 25|k (5*5 " " " " ) (End) %H A046461 Patrick De Geest, <a href="http://www.worldofnumbers.com/factorlist.htm">Normal Smarandache Concatenated Numbers, Prime factors from 1 up to n</a>. %H A046461 M. Fleuren, <a href="http://www.gallup.unm.edu/~smarandache/michafleuren.htm">Factors and primes of Smarandache sequences</a>. %H A046461 M. Fleuren, <a href="http://www.gallup.unm.edu/~smarandache/micha.txt">Smarandache Factors and Reverse factors</a>. %H A046461 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_008.htm">Puzzle 8. Primes by Listing</a>, The Prime Puzzles and Problems Connection. %e A046461 A007908(691)=1304238680165623831238651513722972177904593843651*C1916, so A007908(691) is not a semiprime and 691 is not a term of this sequence. %t A046461 Select[Range[100], Length@FactorInteger@FromDigits@Flatten@IntegerDigits@Range@# == 2 &] (* _Robert Price_, Oct 11 2019 *) %t A046461 Select[Range[100],PrimeOmega[FromDigits[Flatten[IntegerDigits/@Range[#]]]] == 2&] (* _Harvey P. Dale_, Sep 10 2022 *) %Y A046461 Cf. A007908, A046460. %K A046461 nonn,hard,base,more %O A046461 1,1 %A A046461 _Patrick De Geest_, Aug 15 1998 %E A046461 Simplified definition by _Sean A. Irvine_, Mar 29 2010 %E A046461 a(5) from _Sean A. Irvine_, Mar 29 2010