This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046516 #31 Feb 16 2025 08:32:39 %S A046516 68889,68898,68988,69888,86889,86898,86988,88689,88698,88869,88896, %T A046516 88968,88986,89688,89868,89886,96888,98688,98868,98886,168889,168898, %U A046516 168988,169888,186889,186898,186988,188689,188698,188869,188896,188968 %N A046516 Numbers with multiplicative persistence value 7. %C A046516 From _Daniel Mondot_, Mar 26 2022: (Start) %C A046516 The product of the digits of each term is 27648, 47628, 64827, 84672, 134217728, 914838624, 1792336896, 3699376128, 48814981614, 134481277728, 147483721728 or 1438916737499136 (sequence A350185). %C A046516 The first 62 terms produce 27648. %C A046516 The first term that produces 47628 is a(63). %C A046516 The first term that produces 64827 is a(233). %C A046516 The first term that produces 84672 is a(235). %C A046516 The first term that produces 134217728 is a(1753110). %C A046516 The first term that produces 914838624 is a(17835449). %C A046516 The first term that produces 1792336896 is a(18235677). %C A046516 The first term that produces 3699376128 is a(23853261). %C A046516 The first term that produces 48814981614 is a(66441891). %C A046516 The first term that produces 134481277728 is a(452601087). %C A046516 The first term that produces 147483721728 is a(425636434). %C A046516 The first term that produces 1438916737499136 is somewhere after a(500*10^6). (End) %H A046516 Robert Israel, <a href="/A046516/b046516.txt">Table of n, a(n) for n = 1..10000</a> %H A046516 Daniel Mondot, <a href="https://oeis.org/wiki/File:Multiplicative_Persistence_Tree.txt">Multiplicative Persistence Tree</a> %H A046516 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MultiplicativePersistence.html">Multiplicative Persistence</a> %e A046516 68889 -> [ 27648 ][ 2688 ][ 768 ][ 336 ][ 54 ][ 20 ][ 0 ] -> one digit in seven steps. %p A046516 mp:= proc(n) option remember; %p A046516 if n <= 9 then return 0 fi; %p A046516 1+procname(convert(convert(n,base,10),`*`)) %p A046516 end proc: %p A046516 select(mp=7, [$1..200000]); # _Robert Israel_, Feb 12 2019 %Y A046516 Cf. A003001, A014120, A046507, A350185. %K A046516 nonn,base %O A046516 1,1 %A A046516 _Patrick De Geest_, Sep 15 1998