This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046635 #17 Nov 24 2017 16:32:04 %S A046635 1,3,15,99,689,4817,33713,235987,1651903,11563315,80943201,566602401, %T A046635 3966216801,27763517603,194344623215,1360412362499,9522886537489, %U A046635 66660205762417,466621440336913,3266350082358387,22864450576508703 %N A046635 Number of cubic residues mod 7^n. %H A046635 S. R. Finch and Pascal Sebah, <a href="http://arXiv.org/abs/math.NT/0604465">Squares and Cubes Modulo n</a> (arXiv:math.NT/0604465). %H A046635 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,0,1,-7). %F A046635 a(n) = A046530(7^n). %F A046635 a(n)= +7*a(n-1) +a(n-3) -7*a(n-4) with g.f. ( 1-4*x-6*x^2-7*x^3 ) / ( (x-1)*(7*x-1)*(1+x+x^2) ). - _R. J. Mathar_, Feb 27 2011 %p A046635 A046635 := proc(n) %p A046635 7^(n+2)+2*op(1+modp(n,3),[61,85,82]) ; %p A046635 %/171 ; %p A046635 end proc: %p A046635 seq(A046635(n),n=0..20) ; # _R. J. Mathar_, Oct 08 2017 %t A046635 LinearRecurrence[{7, 0, 1, -7}, {1, 3, 15, 99}, 21] (* _Jean-François Alcover_, Nov 24 2017 *) %K A046635 nonn,easy %O A046635 0,2 %A A046635 _David W. Wilson_