This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046636 #47 Apr 03 2025 14:30:49 %S A046636 1,5,37,293,2341,18725,149797,1198373,9586981,76695845,613566757, %T A046636 4908534053,39268272421,314146179365,2513169434917,20105355479333, %U A046636 160842843834661,1286742750677285,10293942005418277,82351536043346213,658812288346769701,5270498306774157605,42163986454193260837 %N A046636 Number of cubic residues mod 8^n. %H A046636 Ralf Stephan, <a href="https://arxiv.org/abs/math/0409509">Prove or disprove: 100 conjectures from the OEIS</a>, arXiv:math/0409509 [math.CO], 2004. %H A046636 E. Wilmer and O. Schirokauer, <a href="http://www.oberlin.edu/math/faculty/wilmer/OEISconj25.pdf">A note on Stephan's conjecture 25</a>, 2004. [broken link] %H A046636 E. Wilmer and O. Schirokauer, <a href="/A046636/a046636.pdf">A note on Stephan's conjecture 25</a>, 2004. [cached copy] %H A046636 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-8). %F A046636 a(n) = (4*8^n + 3)/7. %F A046636 a(n) = 8*a(n-1) - 3 (with a(0)=1). - _Vincenzo Librandi_, Nov 18 2010 %F A046636 From _R. J. Mathar_, Feb 28 2011: (Start) %F A046636 a(n) = A046530(8^n) = A046630(3*n). %F A046636 G.f.: (1-4*x)/((1-8*x)*(1-x)). (End) %F A046636 a(n+1) = A226308(3*n+2). - _Philippe Deléham_, Feb 24 2014 %F A046636 From _Elmo R. Oliveira_, Apr 03 2025: (Start) %F A046636 E.g.f.: exp(x)*(4*exp(7*x) + 3)/7. %F A046636 a(n) = 9*a(n-1) - 8*a(n-2). %F A046636 a(n) = A047853(n+1)/2. (End) %t A046636 LinearRecurrence[{9, -8}, {1, 5}, 20] (* _Jean-François Alcover_, Jan 19 2019 *) %Y A046636 Cf. A007583, A046530, A046630, A047853, A226308. %K A046636 nonn,easy %O A046636 0,2 %A A046636 _David W. Wilson_ %E A046636 More terms from _Elmo R. Oliveira_, Apr 03 2025