This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046639 #25 Mar 08 2022 15:11:22 %S A046639 1,2,2,4,6,7,10,12,18,25,31,41,56,73,96,128,171,226,302,399,533,704, %T A046639 937,1236,1645,2170,2884,3806,5059,6680,8875,11725,15575,20584,27332, %U A046639 36132,47963,63420,84160,111306,147673,195345,259118,342831,454680 %N A046639 Length of A001388(n). %C A046639 The average multiplicative growth from the n-th term to the (n+1)st term is the largest root of x^3 - x - 1, which is approximately 1.324718. - _Nathaniel Johnston_, Jan 13 2011 %H A046639 Peter J. C. Moses, <a href="/A046639/b046639.txt">Table of n, a(n) for n = 1..1000</a> %H A046639 N. Johnston, <a href="http://www.njohnston.ca/2011/01/further-variants-of-the-look-and-say-sequence/">Further Variants of the “Look-and-Say” Sequence</a> %H A046639 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,1,0,-2,-2,0,2,2,0,-1,-1). %F A046639 From _Colin Barker_, Jul 01 2020: (Start) %F A046639 G.f.: x*(1 + 2*x - x^3 - x^5 + x^8 + 5*x^9 + x^10 - 4*x^11 - 4*x^12 - 2*x^13 + x^14 + 4*x^15 + 3*x^16 - x^17) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - x^2 - x^3)*(1 - x^2 + x^5)). %F A046639 a(n) = 2*a(n-2) + a(n-3) - 2*a(n-5) - 2*a(n-6) + 2*a(n-8) + 2*a(n-9) - a(n-11) - a(n-12) for n>18. %F A046639 (End) %t A046639 p={-1,3,4,1,-2,-4,-4,1,5,1,0,0,-1,0,-1,0,2,1}; %t A046639 q={1,1,0,-2,-2,0,2,2,0,-1,-2,0,1}; %t A046639 gf=Fold[x #1+#2&,0,p]/Fold[x #1+#2&,0,q]; %t A046639 CoefficientList[Series[gf,{x,0,100}],x] (* _Peter J. C. Moses_, Jun 21 2013 *) %t A046639 LinearRecurrence[{0,2,1,0,-2,-2,0,2,2,0,-1,-1},{1,2,2,4,6,7,10,12,18,25,31,41,56,73,96,128,171,226},50] (* _Harvey P. Dale_, Mar 08 2022 *) %o A046639 (PARI) Vec(x*(1 + 2*x - x^3 - x^5 + x^8 + 5*x^9 + x^10 - 4*x^11 - 4*x^12 - 2*x^13 + x^14 + 4*x^15 + 3*x^16 - x^17) / ((1 - x)*(1 + x)*(1 + x^2)*(1 - x^2 - x^3)*(1 - x^2 + x^5)) + O(x^50)) \\ _Colin Barker_, Jul 01 2020 %Y A046639 Cf. A005150, A049194. %K A046639 nonn,base,easy %O A046639 1,2 %A A046639 _David W. Wilson_