A046651 Triangle of rooted planar maps.
1, 1, 2, 1, 6, 6, 1, 12, 26, 24, 1, 20, 75, 120, 110, 1, 30, 174, 416, 594, 546, 1, 42, 350, 1176, 2289, 3094, 2856, 1, 56, 636, 2880, 7322, 12768, 16728, 15504, 1, 72, 1071, 6324, 20475, 44388, 72420, 93024, 86526, 1, 90, 1700, 12740, 51495, 136252, 267240, 417240, 528770, 493350, 1, 110, 2574, 23936, 118734, 378444, 878460, 1610136, 2437149, 3058770, 2861430
Offset: 0
Links
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
- W. G. Brown, Enumeration of non-separable planar maps
Crossrefs
A091599 is the same triangle with rows reversed and has much more information.
Programs
-
Maple
T := proc(n, k) if k<=n then k*sum((2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!, j=k..min(n, 2*k))/(2*n-k)! else 0 fi end: seq(seq(T(n, n-k+1), k=1..n), n=1..11); # Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 19 2008
-
Mathematica
t[n_, k_] := If[k <= n, k*Sum[(2*j-k)*(j-1)!*(3*n-j-k-1)!/(j-k)!/(j-k)!/(2*k-j)!/(n-j)!, {j, k, Min[n, 2*k]}]/(2*n-k)!, 0]; Table[Table[t[n, n-k+1], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Herman Jamke *)
Extensions
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 19 2008