A046652 Triangle of rooted planar maps, read by rows.
1, 2, 2, 3, 8, 7, 4, 21, 34, 30, 5, 44, 114, 160, 143, 6, 80, 308, 609, 806, 728, 7, 132, 715, 1908, 3315, 4256, 3876, 8, 203, 1482, 5185, 11420, 18444, 23256, 21318, 9, 296, 2814, 12600, 34520, 67856, 104652, 130416, 120175, 10, 414, 4984, 27965, 93924, 221300, 404016, 603801, 746350, 690690, 11, 560, 8343, 57584, 234066, 654336, 1394505, 2418372, 3533145, 4341480, 4032015
Offset: 0
Examples
Triangle begins: 1; 2, 2; 3, 8, 7; 4, 21, 34, 30; 5, 44, 114, 160, 143; 6, 80, 308, 609, 806, 728; ...
Links
- W. G. Brown, Enumeration of non-separable planar maps, Canad. J. Math., 15 (1963), 526-545.
- W. G. Brown, Enumeration of non-separable planar maps [Annotated scanned copy]
Crossrefs
A091665 is the same triangle with rows reversed and has much more information.
Programs
-
Maple
T := proc(n, k) if k<=n then k*sum((2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!, j=k..min(n, 2*k-1))/(2*n-k+1)! else 0 fi end: seq(seq(T(n, n-k+1), k=1..n), n=1..11); # Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008
-
Mathematica
t[n_, k_] := If[k <= n, k*Sum[(2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!, {j, k, Min[n, 2*k-1]}]/(2*n-k+1)!, 0]; Table[t[n, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Herman Jamke *)
Extensions
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Mar 30 2008