A046676 Expansion of 1 + Sum_{k>=1} x^(p_1+p_2+...+p_k)/((1-x)*(1-x^2)*(1-x^3)*...*(1-x^k)) (where p_i are the primes).
1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 9, 10, 12, 14, 17, 19, 23, 26, 31, 35, 41, 46, 54, 60, 69, 78, 89, 99, 113, 126, 143, 159, 179, 199, 224, 248, 277, 307, 343, 378, 421, 464, 515, 567, 628, 690, 763, 837, 923, 1012, 1115, 1219, 1340, 1465, 1607
Offset: 0
Keywords
References
- B. C. Berndt and B. M. Wilson, Chapter 5 of Ramanujan's second notebook, pp. 49-78 of Analytic Number Theory (Philadelphia, 1980), Lect. Notes Math. 899, 1981, see Entry 29.
Links
- George E. Andrews, Arnold Knopfmacher, John Knopfmacher, Engel expansions and the Rogers-Ramanujan identities J. Number Theory 80 (2000), 273-290. See Eq. 2.1.
Programs
-
Maple
t3:=1+add(q^sum(ithprime(i),i=1..j)/mul(1-q^i,i=1..j), j=1..51); t4:=series(t3,q,50); t5:=seriestolist(%);
-
PARI
Vec(sum(i=0,25,x^sum(k=1,i,prime(k))/prod(k=1,i,1-x^k),O(x^99))) \\ M. F. Hasler, Mar 05 2014
-
PARI
A046676(n,S=1,P=1+O(x^(n+1)))={for(k=1,n, n
M. F. Hasler, Mar 05 2014
Comments