cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046688 Antidiagonals of square array in which k-th row (k>0) is an arithmetic progression of difference 2^(k-1).

This page as a plain text file.
%I A046688 #16 May 08 2021 08:32:15
%S A046688 1,1,1,1,2,1,1,3,3,1,1,4,5,5,1,1,5,7,9,9,1,1,6,9,13,17,17,1,1,7,11,17,
%T A046688 25,33,33,1,1,8,13,21,33,49,65,65,1,1,9,15,25,41,65,97,129,129,1,1,10,
%U A046688 17,29,49,81,129,193,257,257,1,1,11,19,33,57,97,161,257,385,513,513,1
%N A046688 Antidiagonals of square array in which k-th row (k>0) is an arithmetic progression of difference 2^(k-1).
%D A046688 G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers, Vol. VII, p. 430.
%H A046688 Andrew Howroyd, <a href="/A046688/b046688.txt">Table of n, a(n) for n = 0..1325</a>
%F A046688 A(m,n) = 1 + n*2^(m-1) for m > 1. - _Andrew Howroyd_, Mar 07 2020
%F A046688 As a triangle, T(n,k) = A(k,n-k) = 1 + (n-k)*2^(k-1). - _Gus Wiseman_, May 08 2021
%e A046688 From _Gus Wiseman_, May 08 2021: (Start):
%e A046688 Array A(m,n) = 1 + n*2^(m-1) begins:
%e A046688        n=0: n=1: n=2: n=3: n=4: n=5: n=6: n=7: n=8: n=9:
%e A046688   m=0:   1    1    1    1    1    1    1    1    1    1
%e A046688   m=1:   1    2    3    5    9   17   33   65  129  257
%e A046688   m=2:   1    3    5    9   17   33   65  129  257  513
%e A046688   m=3:   1    4    7   13   25   49   97  193  385  769
%e A046688   m=4:   1    5    9   17   33   65  129  257  513 1025
%e A046688   m=5:   1    6   11   21   41   81  161  321  641 1281
%e A046688   m=6:   1    7   13   25   49   97  193  385  769 1537
%e A046688   m=7:   1    8   15   29   57  113  225  449  897 1793
%e A046688   m=8:   1    9   17   33   65  129  257  513 1025 2049
%e A046688   m=9:   1   10   19   37   73  145  289  577 1153 2305
%e A046688 Triangle T(n,k) = 1 + (n-k)*2^(k-1) begins:
%e A046688    1
%e A046688    1   1
%e A046688    1   2   1
%e A046688    1   3   3   1
%e A046688    1   4   5   5   1
%e A046688    1   5   7   9   9   1
%e A046688    1   6   9  13  17  17   1
%e A046688    1   7  11  17  25  33  33   1
%e A046688    1   8  13  21  33  49  65  65   1
%e A046688    1   9  15  25  41  65  97 129 129   1
%e A046688    1  10  17  29  49  81 129 193 257 257   1
%e A046688    1  11  19  33  57  97 161 257 385 513 513   1
%e A046688 (End)
%t A046688 Table[If[k==0,1,n*2^(k-1)+1],{n,0,9},{k,0,9}] (* ARRAY, _Gus Wiseman_, May 08 2021 *)
%t A046688 Table[If[k==0,1,1+(n-k)*2^(k-1)],{n,0,10},{k,0,n}] (* TRIANGLE, _Gus Wiseman_, May 08 2021 *)
%o A046688 (PARI) A(m,n)={if(m>0, 1+n*2^(m-1), 1)}
%o A046688 { for(m=0, 10, for(n=0, 10, print1(A(m,n), ", ")); print) } \\ _Andrew Howroyd_, Mar 07 2020
%Y A046688 Row sums are A000079.
%Y A046688 Diagonal n = m + 1 of the array is A002064.
%Y A046688 Diagonal n = m of the array is A005183.
%Y A046688 Column m = 1 of the array is A094373.
%Y A046688 Diagonal n = m - 1 of the array is A131056.
%Y A046688 A002109 gives hyperfactorials (sigma: A260146, omega: A303281).
%Y A046688 A009998(k,n) = n^k.
%Y A046688 A009999(n,k) = n^k.
%Y A046688 A057156 = (2^n)^(2^n).
%Y A046688 A062319 counts divisors of n^n.
%Y A046688 Cf. A000169, A000272, A000312, A036289, A343656, A343658.
%K A046688 nonn,tabl,easy
%O A046688 0,5
%A A046688 _N. J. A. Sloane_
%E A046688 More terms from Larry Reeves (larryr(AT)acm.org), Apr 06 2000