This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046691 #73 Jan 01 2023 09:45:42 %S A046691 -1,2,6,11,17,24,32,41,51,62,74,87,101,116,132,149,167,186,206,227, %T A046691 249,272,296,321,347,374,402,431,461,492,524,557,591,626,662,699,737, %U A046691 776,816,857,899,942,986,1031,1077,1124,1172,1221,1271,1322 %N A046691 a(n) = (n^2 + 5*n - 2)/2. %C A046691 If Y_i (i=1,2,3,4) are 2-blocks of an n-set X then, for n>=8, a(n-3) is the number of (n-2)-subsets of X intersecting each Y_i (i=1,2,3,4). - _Milan Janjic_, Nov 09 2007 %C A046691 Numbers m > -3 such that 8*m + 33 is a square. - _Bruno Berselli_, Aug 20 2015 %C A046691 a(n-1) yields the second Betti number of a path graph on n vertices. - _Samuel J. Bevins_, Nov 27 2022 %H A046691 G. C. Greubel, <a href="/A046691/b046691.txt">Table of n, a(n) for n = 0..5000</a> %H A046691 Milan Janjic, <a href="https://pmf.unibl.org/wp-content/uploads/2017/10/enumfor.pdf">Two Enumerative Functions</a> %H A046691 P. Di Francesco, O. Golinelli and E. Guitter, <a href="http://arXiv.org/abs/hep-th/9506030">Meander, folding and arch statistics</a>, arXiv:hep-th/9506030, 1995. %H A046691 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A046691 G.f.: (-1 + 5*x - 3*x^2)/(1 - x)^3. %F A046691 a(n) = a(n-1) + n + 2 with a(0) = -1. - _Vincenzo Librandi_, Nov 18 2010 %F A046691 a(n) = 3*A000096(n-1) - 2*A000096(n-2), with A000096(-2)=A000096(-1)=-1. - _Bruno Berselli_, Dec 17 2014 %F A046691 a(n) = 2*A000217(n) - A000217(n-2), with A000217(-2)=1, A000217(-1)=0. - _Bruno Berselli_, Oct 13 2016 %F A046691 E.g.f.: (1/2)*(x^2 + 6*x - 2)*exp(x). - _G. C. Greubel_, Jul 13 2017 %F A046691 a(n) + a(n+1) = A028884(n). - _R. J. Mathar_, Mar 13 2021 %F A046691 a(n) = A000217(n+2) - 4. - _G. C. Greubel_, Jul 31 2022 %F A046691 Sum_{n>=0} 1/a(n) = 7/12 + 2*Pi*tan(sqrt(33)*Pi/2)/sqrt(33). - _Vaclav Kotesovec_, Dec 31 2022 %p A046691 seq(binomial(n+3, 2)-4, n=0..49); # _Zerinvary Lajos_, Jan 13 2007 %t A046691 Table[(n^2 +5n -2)/2, {n, 0, 50}] (* _Bruno Berselli_, Dec 17 2014 *) %o A046691 (PARI) a(n)=(n^2+5*n-2)/2 \\ _Charles R Greathouse IV_, Oct 07 2015 %o A046691 (Magma) [Binomial(n+3,2) -4: n in [0..50]]; // _G. C. Greubel_, Jul 31 2022 %o A046691 (SageMath) [(n^2 +5*n -2)/2 for n in (0..50)] # _G. C. Greubel_, Jul 31 2022 %Y A046691 Triangular numbers (A000217) minus 4. Cf. A027379. %Y A046691 Cf. A000096, A000217, A002522, A028884. %K A046691 sign,easy %O A046691 0,2 %A A046691 _N. J. A. Sloane_