cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046705 Palindromic primes whose product of digits is a prime.

This page as a plain text file.
%I A046705 #13 Dec 18 2015 03:36:56
%S A046705 2,3,5,7,131,151,11311,1117111,111111151111111,
%T A046705 111111111111111111131111111111111111111,
%U A046705 1111111111111111111111111111111117111111111111111111111111111111111,1111111111111111111111111111111111111111111115111111111111111111111111111111111111111111111
%N A046705 Palindromic primes whose product of digits is a prime.
%C A046705 Except for the first 4 terms, a subsequence of A088281. - _Chai Wah Wu_, Dec 17 2015
%C A046705 Subsequence of A028842, of A046703, and also of A117058. - _Michel Marcus_, Dec 18 2015
%H A046705 Chai Wah Wu, <a href="/A046705/b046705.txt">Table of n, a(n) for n = 1..15</a>
%t A046705 t = Prime[Range[4]]; Union[Select[Flatten[Table[NestList[FromDigits[Flatten[{1, IntegerDigits[#], 1}]] &, n, 45], {n, t}]], PrimeQ]] (* _Jayanta Basu_, Jun 27 2013 *)
%o A046705 (Python)
%o A046705 from __future__ import division
%o A046705 from sympy import isprime
%o A046705 A046705_list = [n for n in ((10**(2*l+1)-1)//9+d*10**l for l in range(100) for d in [1,2,4,6]) if isprime(n)] # _Chai Wah Wu_, Dec 17 2015
%Y A046705 Cf. A028842, A046703, A088281, A117058.
%K A046705 base,nonn
%O A046705 1,1
%A A046705 _Felice Russo_