A046730 a(n) = A002172(n) / 2.
-1, 3, 1, -5, -1, 5, 7, -5, -3, 5, 9, -1, 3, -7, -11, 7, 11, -13, -9, -7, -1, 15, 13, -15, 1, -13, -9, 5, -17, 13, 11, 9, -5, 17, 7, -17, 19, 1, -3, 15, 17, -7, 21, 19, -5, -11, -21, 19, 13, 1, -23, 5, -17, -19, 25, -13, -25, -23, -1, -5, 15, 27, -9, -19, 25, -17, 11, 5, -25, 27, 23, 29, -29, 25
Offset: 1
Keywords
Examples
From _Seiichi Manyama_, Sep 26 2016: (Start) Let p be a prime of the form 4k+1 so that p = a^2 + b^2. We take a odd and such that a = b + 1 (mod 4). p = 5 = (-1)^2 + 2^2 and -1 = 2 + 1 (mod 4). So a(1) = -1. p = 13 = 3^2 + 2^2 and 3 = 2 + 1 (mod 4). So a(2) = 3. p = 17 = 1^2 + 4^2 and 1 = 4 + 1 (mod 4). So a(3) = 1. p = 29 = 5^2 + 2^2 and -5 = 2 + 1 (mod 4). So a(4) = -5. (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- L. Carlitz, The coefficients of the lemniscate function, Math. Comp., 16 (1962), 475-478.
- Index entries for sequences related to Glaisher's numbers
Crossrefs
Cf. A002172.
Programs
-
Mathematica
Map[-Sum[JacobiSymbol[x^3 - x, #], {x, 0, # - 1}] &, Select[Prime@ Range@ 155, Mod[#, 4] == 1 &]]/2 (* Michael De Vlieger, Sep 26 2016, after Jean-François Alcover at A002172 *)
-
PARI
a002172(n) = {my(m, c); if(n<1, 0, c=0; m=0; while(c
Altug Alkan, Sep 27 2016
Extensions
Offset changed to 1 to match A002172, Joerg Arndt, Sep 27 2016