cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046735 Nontrivial (i.e., having no nontrivial factors with this property) integers which do not divide any terms of A000213.

This page as a plain text file.
%I A046735 #20 Mar 05 2019 08:24:43
%S A046735 2,27,91,103,163,199,203,221,247,305,371,377,397,421,551,559,757,779,
%T A046735 883,991,1021,1079,1087,1123,1189,1199,1237,1351,1521,1543,1567,1609,
%U A046735 1651,1753,1769,1799,1807,1873,1883,1919,2009,2071,2261,2539
%N A046735 Nontrivial (i.e., having no nontrivial factors with this property) integers which do not divide any terms of A000213.
%H A046735 Robert Israel, <a href="/A046735/b046735.txt">Table of n, a(n) for n = 1..1275</a>
%p A046735 nd:= proc(p) local a,b,c,r,R;
%p A046735    a:= 1; b:= 1; c:= 1; R[1,1,1]:= true;
%p A046735    do
%p A046735      r:= a+b+c mod p;
%p A046735      if r = 0 then return false fi;
%p A046735      a:= b; b:= c; c:= r;
%p A046735      if assigned(R[a,b,c]) or nops({a,b,c})=1
%p A046735          then return true
%p A046735          else R[a,b,c]:= true
%p A046735        fi;
%p A046735    od
%p A046735 end proc:
%p A046735 N:= 10^4: # to get all terms <= N
%p A046735 V:= Vector(N): Res:= NULL:
%p A046735 for n from 1 to N do
%p A046735   if V[n] = 0 then
%p A046735     if nd(n) then Res:= Res,n; V[[seq(k*n,k=2..floor(N/n))]]:= 1; fi
%p A046735   fi;
%p A046735 od:
%p A046735 Res; # _Robert Israel_, Feb 26 2017
%t A046735 nondivisor[n_] := Module[{a = 1, b = 1, c = 1, t}, For[i = 1, i <= n^2, i++, t = Mod[a+b+c, n]; If[t != 0, a = b; b = c; c = t, Return[False]]; If[c == 1 && b == 1 && a == 1, Return[True]]]];
%t A046735 okQ[n_] := Do[If[nondivisor[d], Return[n == d]], {d, Divisors[n]}];
%t A046735 Select[Range[3000], okQ] (* _Jean-François Alcover_, Mar 05 2019, from PARI *)
%o A046735 (PARI) nondivisor(n)=my(a=1,b=1,c=1,t);for(i=1,n^2,t=(a+b+c)%n;if(t,a=b;b=c;c=t,return(0));if(c==1&&b==1&&a==1,return(1)))
%o A046735 is(n)=fordiv(n,d,if(nondivisor(d),return(n==d)));0 \\ _Charles R Greathouse IV_, Aug 29 2012
%K A046735 nonn
%O A046735 1,1
%A A046735 _David W. Wilson_
%E A046735 Definition corrected by Henry Ayoola (henry.ayoola(AT)googlemail.com), Feb 03 2009
%E A046735 a(1) added by _Charles R Greathouse IV_, Aug 29 2012