cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046757 Triangle of coefficients of certain polynomials (exponents in decreasing order).

This page as a plain text file.
%I A046757 #10 Aug 09 2024 05:17:33
%S A046757 1,2,1,5,5,1,30,30,10,1,272,272,102,17,1,3250,3250,1300,260,26,1,
%T A046757 47952,47952,19980,4440,555,37,1,840350,840350,360150,85750,12250,
%U A046757 1050,50,1,17039360,17039360,7454720,1863680,291200,29120,1820,65,1,392203458
%N A046757 Triangle of coefficients of certain polynomials (exponents in decreasing order).
%F A046757 a(n, n) = 1, a(n, m) = (1+n^2)*binomial(n, m)*n^(n-m-2), n>m >= 0, else 0.
%e A046757 Triangle begins:
%e A046757   {1};
%e A046757   {2,1};
%e A046757   {5,5,1};
%e A046757   {30,30,10,1};
%e A046757   {272,272,102,17,1};
%e A046757   ....
%e A046757 E.g. third row {5,5,1} corresponds to polynomial q(3,x)= 5*x^2+5*x+1.
%Y A046757 x*p(k-1, -x)/q(k, -x), with the row polynomials p(n, x) from triangle A033842(n, m) is for k=1..5 g.f. for A000079 (powers of two), A039717, A043553, A045624, A046088, respectively.
%K A046757 easy,nonn,tabl
%O A046757 0,2
%A A046757 _Wolfdieter Lang_