cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046776 Number of partitions of 5n with equal number of parts congruent to each of 0, 1, 2, 3 and 4 (mod 5).

This page as a plain text file.
%I A046776 #30 Sep 16 2019 18:12:38
%S A046776 1,0,0,1,5,15,36,75,146,271,495,891,1601,2851,5051,8851,15362,26331,
%T A046776 44642,74787,123991,203433,330717,532872,851779,1351147,2128324,
%U A046776 3330059,5177768,8002170,12296754,18791945,28566751,43204575,65022987,97395386,145217908
%N A046776 Number of partitions of 5n with equal number of parts congruent to each of 0, 1, 2, 3 and 4 (mod 5).
%C A046776 Number of partitions of m with equal numbers of parts congruent to each of 1, 2, 3 and 4 (mod 5) is 0 unless m == 0 mod 5.
%H A046776 Andrew Howroyd, <a href="/A046776/b046776.txt">Table of n, a(n) for n = 0..1000</a>
%H A046776 <a href="/wiki/Partitions_of_5n">Index and properties of sequences related to partitions of 5n</a>
%F A046776 a(n) = A202085(n) - A202086(n).
%F A046776 a(n) = A036884(n) - A036886(n).
%F A046776 a(n) = A036889(n) - A036892(n).
%F A046776 a(n) = A202087(n) - A202088(n).
%F A046776 G.f.: Sum_{k>=0} x^(3*k)/(Product_{j=1..k} 1 - x^j)^5. - _Andrew Howroyd_, Sep 16 2019
%p A046776 mkl:= proc(i,l) local ll, mn, ii, x; ii:= irem(i,5); ii:= `if`(ii=0, 5, ii); ll:= applyop(x->x+1, ii, l); mn:= min(l[]); `if`(mn=0, ll, map (x->x-mn, ll)) end:
%p A046776 g:= proc(n,i,t) local m, mx, j; if n<0 then 0 elif n=0 then `if`(nops ({t[]})=1, 1, 0) elif i=0 then 0 elif i<6 then mx:= max (t[]); m:= n-15*mx +add(t[j]*j, j=1..5); g(n,i,t):= `if`(m>=0 and irem(m, 15)=0, 1, 0) else g(n,i,t):= g(n, i-1, t) + g(n-i, i, mkl(i, t)) fi end:
%p A046776 a:= n-> g(5*n, 5*n, [0$5]):
%p A046776 seq(a(n), n=0..20);  # _Alois P. Heinz_, Jul 04 2009
%t A046776 $RecursionLimit = 1000; mkl[i_, l_List] := Module[{ ll, mn, ii, x}, ii = Mod[i, 5]; ii = If[ii == 0, 5, ii]; ll = MapAt[#+1&, l, ii]; mn = Min[l]; If[mn == 0, ll, Map [#-mn&, ll]]]; g[n_, i_, t_List] := g[n, i, t] = Module[{ m, mx, j}, Which[n<0, 0 , n == 0, If[Length[t // Union] == 1, 1, 0], i==0, 0, i<6, mx = Max[t]; m = n-15*mx + Sum[t[[j]]*j, {j, 1, 5}]; If[m >= 0 && Mod[m, 15] == 0, 1, 0], True, g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]; a[n_] := g[5*n, 5*n, {0, 0, 0, 0, 0}]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jul 21 2015, after _Alois P. Heinz_ *)
%o A046776 (PARI) seq(n)={Vec(sum(k=0, n\3, x^(3*k)/prod(j=1, k, 1 - x^j + O(x*x^n))^5) + O(x*x^n))} \\ _Andrew Howroyd_, Sep 16 2019
%Y A046776 Cf. A046765, A046787.
%K A046776 nonn
%O A046776 0,5
%A A046776 _David W. Wilson_
%E A046776 a(18)-a(35) from _Alois P. Heinz_, Jul 04 2009
%E A046776 Edited by _Max Alekseyev_, Dec 11 2011
%E A046776 a(36) from _Alois P. Heinz_, Feb 03 2013