cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046787 Number of partitions of 5n with equal nonzero number of parts congruent to each of 1, 2, 3 and 4 modulo 5.

This page as a plain text file.
%I A046787 #30 Sep 16 2019 18:14:19
%S A046787 0,0,1,5,17,46,113,254,546,1122,2242,4354,8286,15441,28303,51025,
%T A046787 90699,159003,275355,471216,797761,1336686,2218393,3648177,5948503,
%U A046787 9620406,15439833,24597942,38916192,61159549,95508014,148241050,228753319,351022425,535760584
%N A046787 Number of partitions of 5n with equal nonzero number of parts congruent to each of 1, 2, 3 and 4 modulo 5.
%C A046787 Number of partitions of m with equal numbers of parts congruent to each of 1, 2, 3 and 4 (mod 5) is 0 unless m == 0 mod 5.
%H A046787 Andrew Howroyd, <a href="/A046787/b046787.txt">Table of n, a(n) for n = 0..1000</a> (terms n=0..100 from Alois P. Heinz)
%H A046787 <a href="/wiki/Partitions_of_5n">Index and properties of sequences related to partitions of 5n</a>
%F A046787 a(n) = A046776(n) + A202086(n) + A202088(n) - A000041(n) = A202192(n) - A000041(n). - _Max Alekseyev_
%F A046787 G.f.: (Sum_{k>0} x^(2*k)/(Product_{j=1..k} 1 - x^j)^4)/(Product_{j>0} 1 - x^j). - _Andrew Howroyd_, Sep 16 2019
%p A046787 mkl:= proc(i,l) local ll, mn, x; ll:= `if`(irem(i, 5)=0, l, applyop(x->x+1, irem(i,5), l)); mn:= min(l[])-1; `if`(mn<=0, ll, map(x->x-mn, ll)) end:
%p A046787 g:= proc(n,i,t) local m, mx; if n<0 then 0 elif n=0 then `if`(t[1]>0 and t[1]=t[2] and t[2]=t[3] and t[3]=t[4], 1, 0) elif i=0 then 0 elif i<5 then mx:= max(t[]); m:= n-10*mx +t[1] +t[2]*2 +t[3]*3 +t[4]*4; `if`(m>=0 and irem(m, 10)=0, 1, 0) else g(n,i,t):= g(n, i-1, t) + g(n-i, i, mkl(i, t)) fi end:
%p A046787 a:= n-> g(5*n, 5*n, [0,0,0,0]):
%p A046787 seq(a(n), n=0..20);  # _Alois P. Heinz_, Jul 04 2009
%t A046787 mkl[i_, l_] := Module[{ll, mn, x}, ll = If[Mod[i, 5] == 0, l, MapAt[#+1&, l, Mod[i, 5]]]; mn = Min[l]-1; If[mn <= 0, ll, Map[#-mn&, ll]]];
%t A046787 g[n_, i_, t_] := g[n, i, t] = Module[{m, mx}, If[n<0, 0, If[n==0, If[ t[[1]]>0 && Equal @@ t[[1;;4]], 1, 0], If[i==0, 0, If[i<5, mx = Max[t]; m = n - 10 mx + t[[1]] + 2 t[[2]] + 3 t[[3]] + 4 t[[4]]; If[m >= 0 && Mod[m, 10]==0, 1, 0], g[n, i-1, t] + g[n-i, i, mkl[i, t]]]]]]];
%t A046787 a[n_] := g[5n, 5n, {0, 0, 0, 0}];
%t A046787 Table[a[n], {n, 0, 34}] (* _Jean-François Alcover_, May 25 2019, after _Alois P. Heinz_ *)
%o A046787 (PARI) seq(n)={Vec(sum(k=1, n\2, x^(2*k)/prod(j=1, k, 1 - x^j + O(x*x^(n-2*k)))^4)/prod(j=1, n, 1 - x^j + O(x*x^n)), -(n+1))} \\ _Andrew Howroyd_, Sep 16 2019
%Y A046787 Other similar sequences include:
%Y A046787   Mod 4: A046778, A046779, A046780, A046781, A046782.
%Y A046787   Mod 5: A046783, A046784, A046785, A046786.
%Y A046787 Cf. A046765, A046776, A202192.
%K A046787 nonn
%O A046787 0,4
%A A046787 _David W. Wilson_
%E A046787 a(17)-a(32) from _Alois P. Heinz_, Jul 04 2009
%E A046787 a(33)-a(34) from _Alois P. Heinz_, Aug 13 2013