This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046803 #17 Mar 08 2020 00:21:26 %S A046803 1,1,2,1,6,3,1,14,22,4,1,30,105,65,5,1,62,416,581,171,6,1,126,1491, %T A046803 3920,2695,420,7,1,254,5034,22506,29310,11180,988,8,1,510,16365, %U A046803 116667,256317,188361,43041,2259,9,1,1022,51892,564667,1945297,2419897,1090135 %N A046803 Triangle of numbers related to Eulerian numbers. %D A046803 D. Singh, The numbers L(m,n) and their relations with prepared Bernoulli and Eulerian numbers, Math. Student, 20 (1952), 66-70. %H A046803 Andrew Howroyd, <a href="/A046803/b046803.txt">Table of n, a(n) for n = 1..1275</a> %F A046803 T(n, k) = Sum_{i=1..n} binomial(n,i) * A008292(n-i, k-1). %F A046803 E.g.f.: exp(x*y)*(exp(x)-1)*(y-1)/(y*exp(x)-exp(x*y)). - _Vladeta Jovovic_, Sep 20 2003 %e A046803 Triangle begins %e A046803 1; %e A046803 1, 2; %e A046803 1, 6, 3; %e A046803 1, 14, 22, 4; %e A046803 1, 30, 105, 65, 5; %e A046803 1, 62, 416, 581, 171, 6; %e A046803 1, 126, 1491, 3920, 2695, 420, 7; %e A046803 ... %t A046803 egf = Exp[x*y]*(Exp[x]-1)*((y-1)/(y*Exp[x] - Exp[x*y])); row[n_] := Last[ CoefficientList[ Series[egf, {x, 0, n}, {y, 0, n}], {x, y}]]*n!; Flatten[ Table[ row[n], {n, 1, 10}]] (* _Jean-François Alcover_, Dec 20 2012, after _Vladeta Jovovic_ *) %o A046803 (PARI) T(n)={my(A=O(x*x^n)); [Vecrev(p) | p<-Vec(serlaplace(exp(x*y + A)*(exp(x + A)-1)*(y-1)/(y*exp(x + A)-exp(x*y + A))))]} %o A046803 { my(A=T(10)); for(n=1, #A, print(A[n])) } \\ _Andrew Howroyd_, Mar 07 2020 %o A046803 (PARI) \\ here U(n,k) is A008292. %o A046803 U(n, k)={sum(j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j))}; %o A046803 T(n, k)={sum(i=1, n, binomial(n,i)*U(n-i, k-1))} \\ _Andrew Howroyd_, Mar 07 2020 %Y A046803 Row sums give A002627. %Y A046803 Cf. A008292 (Eulerian numbers), A046802. %K A046803 nonn,tabl,easy,nice %O A046803 1,3 %A A046803 _N. J. A. Sloane_ %E A046803 More terms from _Vladeta Jovovic_, Sep 20 2003