A046815 Smallest number which can be written as the sum of distinct Fibonacci numbers in n ways and such that the Zeckendorf representation of the number uses only even-subscripted Fibonacci numbers.
1, 3, 8, 21, 24, 144, 58, 63, 147, 155, 152, 173, 168, 385, 398, 461, 406, 401, 435, 1215, 440, 1016, 1011, 1063, 1053, 1045, 1066, 2608, 1050, 1139, 1160, 2650, 2642, 1155, 2663, 2807, 2647, 6841, 2969, 2749, 2736, 7145, 2757, 2791
Offset: 1
Keywords
Examples
a(9)=147 because 147=F(12)+F(4) and 147 is the smallest such integer having 9 representations: 147=144+3 or 144+2+1 or 89+55+3 or 89+55+2+1 or 89+34+21+3 or 89+34+21+2+1 or 89+34+13+8+3 or 89+34+13+8+2+1 or 89+34+13+5+3+2+1.
Links
- Marjorie Bicknell-Johnson, The least integer having p Fibonacci representations (p prime), Fibonacci Quarterly 40 (2002), pp. 260-265.
Comments