This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046820 #31 May 22 2025 10:20:06 %S A046820 0,2,2,4,2,3,4,3,2,4,3,5,4,2,3,4,2,4,4,6,3,4,5,5,4,6,2,4,3,3,4,5,2,4, %T A046820 4,6,4,5,6,4,3,5,4,6,5,4,5,6,4,6,6,8,2,3,4,4,3,5,3,5,4,4,5,6,2,4,4,6, %U A046820 4,5,6,5,4,6,5,7,6,3,4,5,3,5,5,7,4,5,6,6,5,7,4,6,5 %N A046820 Number of 1's in binary expansion of 5n. %C A046820 a(n) is also the largest integer such that 2^a(n) divides binomial(10n, 5n). - _Benoit Cloitre_, Mar 27 2002 %H A046820 Indranil Ghosh, <a href="/A046820/b046820.txt">Table of n, a(n) for n = 0..10000</a> %H A046820 Michael Gilleland, <a href="/selfsimilar.html">Some Self-Similar Integer Sequences</a>. %F A046820 a(n) = floor(log(gcd(binomial(10*n, 5*n), 2^floor(log(binomial(10*n, 5*n))/log(2))))/log(2)). - _Benoit Cloitre_, Mar 27 2002 %F A046820 a(n) = A000120(5*n). - _Indranil Ghosh_, Jan 18 2017 %e A046820 For n = 10, 5*n = 50 = 110010_2, having 3 1's. So, a(10) = 3. - _Indranil Ghosh_, Jan 18 2017 %t A046820 a[n_] := DigitCount[5*n, 2, 1]; Array[a, 100, 0] (* _Amiram Eldar_, Jul 18 2023 *) %o A046820 (Python) %o A046820 def A046820(n): %o A046820 return bin(5*n)[2:].count("1") # _Indranil Ghosh_, Jan 18 2017 %o A046820 (PARI) a(n) = hammingweight(5*n); \\ _Michel Marcus_, Aug 19 2018 %Y A046820 Cf. A000120. %K A046820 nonn,base %O A046820 0,2 %A A046820 _N. J. A. Sloane_