A046859 Simplified Ackermann function (main diagonal of Ackermann-Péter function).
1, 3, 7, 61
Offset: 0
Examples
From _Natan Arie Consigli_, Apr 10 2016: (Start) a(0) = 2[0](0+3)-3 = 1; a(1) = 2[1](1+3)-3 = 3; a(2) = 2[2](2+3)-3 = 7; a(3) = 2[3](3+3)-3 = 61; a(4) = 2[4](4+3)-3 = 2^(2^(2^65536)) - 3. (End)
References
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 60, 1996.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
- H. Hermes, Aufzaehlbarkeit, Entscheidbarkeit, Berechenbarkeit: Einfuehrung in die Theorie der rekursiven Funktionen (3rd ed., Springer, 1978), 83-89.
- H. Hermes, ditto, 2nd ed. also available in English (Springer, 1969), ch. 13
Links
- W. Ackermann, Zum Hilbertschen Aufbau der reellen Zahlen, Math. Ann. 99 (1928), 118-133.
- D. E. Knuth and N. J. A. Sloane, Correspondence, May 1970
- Index entries for sequences related to Ackermann function
Crossrefs
Formula
From Natan Arie Consigli, Apr 10 2016: (Start)
A(0, y) := y+1, A(x+1, 0) := A(x, 1), A(x+1, y+1) := A(x, A(x+1, y));
a(n) = A(n,n).
a(n) = 2[n](n+3)-3 = H_n(2,n+3)-3. (End)
Extensions
Additional comments from Frank Ellermann, Apr 21 2001
Name clarified by Natan Arie Consigli, May 13 2016
Comments