This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046886 #15 Aug 07 2022 08:14:32 %S A046886 2,3,3,3,3,5,2,4,4,4,3,5,2,4,5,4,2,7,2,5,4,4,3,6,3,4,4,4,3,8,2,4,5,3, %T A046886 4,8,2,3,4,6,3,7,2,5,6,4,2,7,2,5,4,4,3,8,4,6,3,4,2,9,2,3,6,4,4,7,2,4, %U A046886 5,6,2,9,2,4,6,3,3,8,2,6,5,4,3,7,3,4,4,6,3,11,2,4,3,3,4,8,2,5,7,6,2,6,2,5 %N A046886 Number of divisors d of 2n satisfying (d+1) = prime or number of prime factors of the denominator of the even Bernoulli numbers. %C A046886 From von Staudt-Clausen theorem. %D A046886 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Th. 118. %D A046886 Hans Rademacher, Topics in Analytic Number Theory, Springer, 1973, Chap. 1. %H A046886 Amiram Eldar, <a href="/A046886/b046886.txt">Table of n, a(n) for n = 1..10000</a> %F A046886 a(n) = A067513(2n). - _R. J. Mathar_, Aug 07 2022 %p A046886 A046886 := proc(n) %p A046886 A067513(2*n) ; %p A046886 end proc: %p A046886 seq(A046886(n),n=1..100) ; # _R. J. Mathar_, Aug 07 2022 %t A046886 Length[ Select[ Divisors[ 2n ], PrimeQ[ #+1 ]& ] ] or Length[ FactorInteger[ Denominator@BernoulliB[ 2k ] ] ] %t A046886 Table[Count[Divisors[2n],_?(PrimeQ[#+1]&)],{n,110}] (* or *) PrimeOmega/@ Denominator[BernoulliB[2*Range[110]]] (* _Harvey P. Dale_, Mar 19 2015 *) %Y A046886 Cf. A000146, A027642. %K A046886 nonn %O A046886 1,1 %A A046886 _Wouter Meeussen_, Jan 23 2001