A046890 a(n) is the least integer that has exactly n anagrams that are primes.
1, 2, 13, 113, 149, 1013, 1039, 1247, 1123, 1349, 1579, 1237, 10127, 10238, 10139, 10235, 10234, 10457, 11579, 10789, 10237, 11239, 12457, 10279, 12349, 12347, 13678, 12359, 14579, 13489, 10379, 12367, 12389, 23579, 13579, 100349, 12379
Offset: 0
Links
- Michael S. Branicky, Table of n, a(n) for n = 0..8004 (search of numbers with <= 12 digits; terms 0..511 from Chai Wah Wu)
Crossrefs
Cf. A046810.
Programs
-
Mathematica
ap[n_] := Count[FromDigits /@ Select[Permutations[IntegerDigits[n]], First[#] != 0 &], ?PrimeQ]; t = {1}; Do[i = 1; While[ap[i] != n, i++]; AppendTo[t, i], {n, 30}]; t (* _Jayanta Basu, Jun 29 2013 *)
-
Python
from sympy import isprime from sympy.utilities.iterables import multiset_permutations as mp from itertools import count, islice, combinations_with_replacement as mc def nd(d): yield from ("".join((f,)+m) for f in "123456789" for m in mc("0123456789", d-1)) def c(s): return sum(1 for p in mp(s) if p[0]!="0" and isprime(int("".join(p)))) def agen(): # generator of sequence terms n, adict = 0, dict() for digs in count(1): for s in nd(digs): v = c(s) if v not in adict: adict[v] = int(s) while n in adict: yield adict[n]; n += 1 print(list(islice(agen(), 40))) # Michael S. Branicky, Feb 08 2023
Comments