This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046892 #15 Feb 18 2024 05:44:15 %S A046892 0,1,2,3,4,5,8,9,10,11,13,16,18,22,31,34,37,39,40,49,52,64,80,87,93, %T A046892 115,121,144,149,160,172,225,233,298,299,308,384,399,408,423,475,484, %U A046892 569,571,738,806,835,863,934,1247,1413,1525,1739,1775,2282,2303,2325 %N A046892 Number of permutations of digits of A046891(n) that are primes. %H A046892 Michael S. Branicky, <a href="/A046892/b046892.txt">Table of n, a(n) for n = 1..91</a> %t A046892 a = {}; b = -1; Do[c = Count[ PrimeQ[ FromDigits /@ Permutations[IntegerDigits[n]]], True]; If[c > b, b = c; a = Append[a, c]], {n, 1, 10^8}]; a %o A046892 (Python) %o A046892 from sympy import prime %o A046892 from gmpy2 import is_prime %o A046892 from sympy.utilities.iterables import multiset_permutations as mp %o A046892 from itertools import count, islice, combinations_with_replacement as mc %o A046892 def f(n): return sum(1 for p in mp(str(n)) if is_prime(t:=int("".join(p)))) %o A046892 def bgen(d): %o A046892 for f in "123456789": %o A046892 yield from map(int, (f+"".join(m) for m in mc("0123456789", d-1))) %o A046892 def agen(): %o A046892 record = -1 %o A046892 for d in count(1): %o A046892 for k in bgen(d): %o A046892 v = f(k) %o A046892 if v > record: %o A046892 record = v %o A046892 yield v %o A046892 print(list(islice(agen(), 30))) # _Michael S. Branicky_, Feb 17 2024 %Y A046892 Cf. A039999, A046891. %K A046892 nonn,base %O A046892 1,3 %A A046892 _David W. Wilson_