cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046899 Triangle in which n-th row is {binomial(n+k,k), k=0..n}, n >= 0.

This page as a plain text file.
%I A046899 #101 Jul 02 2025 16:01:57
%S A046899 1,1,2,1,3,6,1,4,10,20,1,5,15,35,70,1,6,21,56,126,252,1,7,28,84,210,
%T A046899 462,924,1,8,36,120,330,792,1716,3432,1,9,45,165,495,1287,3003,6435,
%U A046899 12870,1,10,55,220,715,2002,5005,11440,24310,48620,1,11,66,286,1001
%N A046899 Triangle in which n-th row is {binomial(n+k,k), k=0..n}, n >= 0.
%C A046899 C(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0) and (0,1). - _Joerg Arndt_, Jul 01 2011
%C A046899 Row sums are A001700.
%C A046899 T(n, k) is also the number of order-preserving full transformations (of an n-chain) of waist k (waist(alpha) = max(Im(alpha))). - _Abdullahi Umar_, Oct 02 2008
%C A046899 If T(r,c), r=0,1,2,..., c=1,2,...,(r+1), are the triangle elements, then for r > 0, T(r,c) = binomial(r+c-1,c-1) = M(r,c) is the number of monotonic mappings from an ordered set of r elements into an ordered set of c elements. For example, there are 15 monotonic mappings from an ordered set of 4 elements into an ordered set of 3 elements. For c > r+1, use the identity M(r,c) = M(c-1,r+1) = T(c-1,r+1). For example, there are 210 monotonic mappings from an ordered set of 4 elements into an ordered set of 7 elements, because M(4,7) = T(6,5) = 210. Number of monotonic endomorphisms in a set of r elements, M(r,r), therefore appear on the second diagonal of the triangle which coincides with A001700. - _Stanislav Sykora_, May 26 2012
%C A046899 Start at the origin. Flip a fair coin to determine steps of (1,0) or (0,1). Stop when you are a (perpendicular) distance of n steps from the x axis or the y axis. For k = 0,1,...,n-1, C(n-1,k)/2^(n+k) is the probability that you will stop on the point (n,k). This is equal to the probability that you will stop on the point (k,n). Hence, Sum_{k=0..n} C(n,k)/2^(n+k) = 1. - _Geoffrey Critzer_, May 13 2017
%D A046899 H. W. Gould, A class of binomial sums and a series transform, Utilitas Math., 45 (1994), 71-83.
%H A046899 Reinhard Zumkeller, <a href="/A046899/b046899.txt">Rows n=0..150 of triangle, flattened</a>
%H A046899 Karl Dilcher and Maciej Ulas, <a href="https://arxiv.org/abs/1909.11222">Arithmetic properties of polynomial solutions of the Diophantine equation P(x)x^(n+1)+Q(x)(x+1)^(n+1)=1</a>, arXiv:1909.11222 [math.NT], 2019. See Qn(x) Table 1 p. 2.
%H A046899 H. W. Gould, <a href="/A007680/a007680.pdf">A class of binomial sums and a series transform</a>, Utilitas Math., 45 (1994), 71-83. (Annotated scanned copy)
%H A046899 A. Laradji and A. Umar, <a href="http://dx.doi.org/10.1016/j.jalgebra.2003.10.023">Combinatorial results for semigroups of order-preserving partial transformations</a>, Journal of Algebra 278, (2004), 342-359.
%H A046899 A. Laradji and A. Umar, <a href="http://dx.doi.org/10.1007/s00233-005-0553-6">Combinatorial results for semigroups of order-preserving full transformations</a>, Semigroup Forum 72 (2006), 51-62.
%H A046899 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F A046899 T(n,k) = A092392(n,n-k), k = 0..n. - _Reinhard Zumkeller_, Jul 27 2012
%F A046899 T(n,k) = A178300(n,k), n>0, k = 1..n. - _L. Edson Jeffery_, Jul 23 2014
%F A046899 T(n,k) = (n + 1)*hypergeom([-n, 1 - k], [2], 1). - _Peter Luschny_, Jan 09 2022
%F A046899 T(n,k) = hypergeom([-n, -k], [1], 1). - _Peter Luschny_, Mar 21 2024
%F A046899 G.f.: 1/((1-2x*y*C(x*y))*(1-x*C(x*y))), where C(x) is the g.f. for A000108, the Catalan numbers. - _Michael D. Weiner_, Jul 31 2024
%e A046899 The triangle is the lower triangular part of the square array:
%e A046899   1|  1,  1,   1,   1,    1,    1,     1,     1,     1, ...
%e A046899   1,  2|  3,   4,   5,    6,    7,     8,     9,    10, ...
%e A046899   1,  3,  6|  10,  15,   21,   28,    36,    45,    55, ...
%e A046899   1,  4, 10,  20|  35,   56,   84,   120,   165,   220, ...
%e A046899   1,  5, 15,  35,  70|  126,  210,   330,   495,   715, ...
%e A046899   1,  6, 21,  56, 126,  252|  462,   792,  1287,  2002, ...
%e A046899   1,  7, 28,  84, 210,  462,  924|  1716,  3003,  5005, ...
%e A046899   1,  8, 36, 120, 330,  792, 1716,  3432|  6435, 11440, ...
%e A046899   1,  9, 45, 165, 495, 1287, 3003,  6435, 12870| 24310, ...
%e A046899   1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620| ...
%e A046899 The array read by antidiagonals gives the binomial triangle.
%e A046899 From _Reinhard Zumkeller_, Jul 27 2012: (Start)
%e A046899 Take the first n elements of the n-th diagonal (NW to SE) of left half of Pascal's triangle and write it as n-th row on the triangle on the right side, see above
%e A046899   0:                 1                    1
%e A046899   1:               1   _                  1  2
%e A046899   2:             1   2  __                1  3  6
%e A046899   3:           1   3  __  __              1  4 10 20
%e A046899   4:         1   4   6  __  __            1  5 15 35 70
%e A046899   5:       1   5  10  __  __  __          1  6 21 56 .. ..
%e A046899   6:     1   6  15  20  __  __  __        1  7 28 .. .. .. ..
%e A046899   7:   1   7  21  35  __  __  __  __      1  8 .. .. .. .. .. ..
%e A046899   8: 1   8  28  56  70  __  __  __  __    1 .. .. .. .. .. .. .. .. (End)
%p A046899 for n from 0 to 10 do seq( binomial(n+m,n), m = 0 .. n) od; # _Zerinvary Lajos_, Dec 09 2007
%t A046899 t[n_, k_] := Binomial[n + k, n]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Aug 12 2013 *)
%o A046899 (PARI) /* same as in A092566 but use */
%o A046899 steps=[[1, 0], [1, 0] ];
%o A046899 /* _Joerg Arndt_, Jul 01 2011 */
%o A046899 (Haskell)
%o A046899 import Data.List (transpose)
%o A046899 a046899 n k = a046899_tabl !! n !! k
%o A046899 a046899_row n = a046899_tabl !! n
%o A046899 a046899_tabl = zipWith take [1..] $ transpose a007318_tabl
%o A046899 -- _Reinhard Zumkeller_, Jul 27 2012
%o A046899 (Magma) /* As triangle */ [[Binomial(n+k, n): k in [0..n]]: n in [0.. 15]]; // _Vincenzo Librandi_, Aug 18 2015
%o A046899 (SageMath)
%o A046899 for n in (0..9):
%o A046899     print([multinomial(n, k) for k in (0..n)]) # _Peter Luschny_, Dec 24 2020
%Y A046899 Cf. A000108, A046900, A001700, A007318, A034868, A092392, A239103, A178300.
%K A046899 nonn,tabl,easy,nice
%O A046899 0,3
%A A046899 _N. J. A. Sloane_
%E A046899 More terms from _James Sellers_