This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046902 #27 Feb 16 2025 08:32:39 %S A046902 0,1,6,1,7,12,1,8,19,18,1,9,27,37,24,1,10,36,64,61,30,1,11,46,100,125, %T A046902 91,36,1,12,57,146,225,216,127,42,1,13,69,203,371,441,343,169,48,1,14, %U A046902 82,272,574,812,784,512,217,54,1,15,96,354,846,1386,1596,1296,729,271,60 %N A046902 Clark's triangle: left border = 0 1 1 1..., right border = multiples of 6; other entries = sum of 2 entries above. %D A046902 J. E. Clark, Clark's triangle, Math. Student, 26 (No. 2, 1978), p. 4. %H A046902 Harvey P. Dale, <a href="/A046902/b046902.txt">Table of n, a(n) for n = 0..10000</a> %H A046902 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ClarksTriangle.html">Clark's Triangle</a>. %F A046902 T(2*n, n) = A185080(n), for n >= 1. %F A046902 Sum_{k=0..n} T(n, k) = A100206(n) (row sums). %F A046902 T(n, k) = 6*binomial(n, k-1) + binomial(n-1, k), with T(0, 0) = 0. - _Max Alekseyev_, Nov 06 2005 %F A046902 From _G. C. Greubel_, Apr 01 2024: (Start) %F A046902 T(n, n) = A008588(n). %F A046902 T(n, n-1) = A003215(n-1), for n >= 1. %F A046902 Sum_{k=0..n} (-1)^k*T(n, k) = 6*(-1)^n - 6*[n=0] + [n=1]. %F A046902 Sum_{k=0..floor(n/2)} T(n-k, k) = 7*Fibonacci(n) - 3*(1 - (-1)^n). %F A046902 Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = b(n), where b(n) = b(n-12) is the repeating pattern {0, 1, -5, -6, 5, 11, 0, -11, -5, 6, 5, -1}. (End) %e A046902 Triangle begins as: %e A046902 0; %e A046902 1, 6; %e A046902 1, 7, 12; %e A046902 1, 8, 19, 18; %e A046902 1, 9, 27, 37, 24; %e A046902 1, 10, 36, 64, 61, 30; %e A046902 1, 11, 46, 100, 125, 91, 36; %e A046902 1, 12, 57, 146, 225, 216, 127, 42; %e A046902 1, 13, 69, 203, 371, 441, 343, 169, 48; %t A046902 Join[{0},Flatten[Table[6*Binomial[n,k-1]+Binomial[n-1,k],{n,10},{k,0,n}]]] (* _Harvey P. Dale_, Nov 04 2012 *) %o A046902 (Haskell) %o A046902 a046902 n k = a046902_tabl !! n !! k %o A046902 a046902_row n = a046902_tabl !! n %o A046902 a046902_tabl = [0] : iterate %o A046902 (\row -> zipWith (+) ([0] ++ row) (row ++ [6])) [1,6] %o A046902 -- _Reinhard Zumkeller_, Dec 26 2012 %o A046902 (Magma) %o A046902 A046902:= func< n,k | n eq 0 select 0 else 6*Binomial(n, k-1) + Binomial(n-1, k) >; %o A046902 [A046902(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 01 2024 %o A046902 (SageMath) %o A046902 def A046902(n,k): return 6*binomial(n, k-1) + binomial(n-1, k) - int(n==0) %o A046902 flatten([[A046902(n, k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Apr 01 2024 %Y A046902 Cf. A100206 (row sums), A185080 (central terms). %Y A046902 Cf. A008588, A003215. %K A046902 nonn,easy,tabl,nice %O A046902 0,3 %A A046902 _N. J. A. Sloane_ %E A046902 More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000 %E A046902 More terms from _Max Alekseyev_, May 12 2005