cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046919 Maximal coefficient of polynomial p(n), with p(3)=1, p(n) = (1 - t^(2*n - 4))*(1 - t^(2*n - 3))*p(n - 1)/((1 - t^(n - 3))*(1 - t^n)).

Original entry on oeis.org

1, 1, 3, 8, 24, 73, 227, 734, 2430, 8150, 27718, 95514, 332578, 1168261, 4136477, 14749992, 52925886, 190973410, 692583902, 2523265494, 9231352260, 33901898722, 124940568222, 461938289518, 1713007181342, 6369928427268, 23747917426918, 88747514693530, 332397792962692, 1247582980566935, 4691740496135919, 17676678143316236, 66714895880626460, 252207367615436780
Offset: 3

Views

Author

Keywords

Comments

a(n) is also the number of partitions of n(n-1)/2 into n (nonzero) parts, none greater than n-2 [Riordan].

Examples

			1; 1+t+t^2+t^3+t^4+t^5, t^10+t^9+2*t^8+2*t^7+3*t^6+3*t^5+3*t^4+2*t^3+2*t^2+t+1, ...
		

Crossrefs

Programs

  • Maple
    p := proc(n)
    option remember;
    if n = 3 then 1 else
    simplify((1-t^(2*n-4))*(1-t^(2*n-3))*p(n-1)/((1-t^(n-3))*(1-t^n)));
    fi; end;
    for i from 3 to 40 do
    lprint(coeff(expand(p(i)),t,i*(i-3)/2)):
    od:
  • Mathematica
    p[3] = 1; p[n_] := p[n] = (1 - t^(2*n-4))*(1 - t^(2*n-3))*(p[n-1]/((1 - t^(n-3))*(1 - t^n)))// Simplify // Expand; a[n_] := Coefficient[p[n], t, n*(n-3)/2]; Table[a[n], {n, 3, 40}] (* Jean-François Alcover, Aug 01 2013, after Maple *)

Formula

a(n) ~ sqrt(3) * 2^(2*n-3) / (Pi * n^2). - Vaclav Kotesovec, Jan 07 2023

Extensions

Corrected terms and Maple program. - N. J. A. Sloane, May 09 2012