cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046955 Numbers k such that sec(k) decreases monotonically to 1 (or cos(k) increases to 1).

This page as a plain text file.
%I A046955 #32 Jun 28 2021 04:06:24
%S A046955 1,6,19,25,44,333,710,103993,312689,1980127,2292816,4272943,10838702,
%T A046955 80143857,411557987,2137933792,2549491779,12335900908,14885392687,
%U A046955 42106686282,1783366216531,8958937768937,279510437053578,288469374822515,567979811876093
%N A046955 Numbers k such that sec(k) decreases monotonically to 1 (or cos(k) increases to 1).
%C A046955 Also numerators of convergents to 2*Pi. - _Vladeta Jovovic_, Nov 09 2004
%e A046955 cos(411557987) = 0.999999999999999996782535835854909099962858791940...
%t A046955 a = 0; Do[ If[ Cos[n] > a, Print[n]; a = Cos[n]], {n, 1, 421000000}] (* _Robert G. Wilson v_, Dec 29 2003 *)
%t A046955 b = 10; Do[ If[ Abs[ Mod[n + Pi/2, 2Pi] - Pi/2] < b, Print[n]; b = Abs[ Mod[n + Pi/2, 2Pi] - Pi/2]], {n, 1, 421000000}] (* _Robert G. Wilson v_, Dec 29 2003 *)
%t A046955 Join[{1}, Numerator[Convergents[2Pi, 33]]] (* _Stéphane Mottelet_, Oct 12 2011 *)
%Y A046955 Cf. A046947.
%Y A046955 Cf. A242859 (denominators).
%K A046955 nonn,frac
%O A046955 1,2
%A A046955 _Olivier Gérard_
%E A046955 More terms from _Michel ten Voorde_
%E A046955 One more term from _Vladeta Jovovic_, Apr 03 2000
%E A046955 8 more terms from _Vladeta Jovovic_, Nov 09 2004
%E A046955 More terms from _Stéphane Mottelet_, Oct 12 2011
%E A046955 Definition corrected by _N. J. A. Sloane_, Mar 16 2018 following a suggestion from _Allan C. Wechsler_.