cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046977 Denominators of Taylor series for sec(x). Also denominators of Taylor series for sech(x) = 1/cosh(x).

This page as a plain text file.
%I A046977 #24 Feb 16 2025 08:32:39
%S A046977 1,2,24,720,8064,3628800,95800320,87178291200,4184557977600,
%T A046977 6402373705728000,97316080327065600,1124000727777607680000,
%U A046977 9545360026665222144000,403291461126605635584000000,3209350995912777478963200000,265252859812191058636308480000000
%N A046977 Denominators of Taylor series for sec(x). Also denominators of Taylor series for sech(x) = 1/cosh(x).
%D A046977 G. W. Caunt, Infinitesimal Calculus, Oxford Univ. Press, 1914, p. 477.
%H A046977 Seiichi Manyama, <a href="/A046977/b046977.txt">Table of n, a(n) for n = 0..225</a> (terms 0..100 from T. D. Noe)
%H A046977 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Secant.html">Secant</a>
%H A046977 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HyperbolicSecant.html">Hyperbolic Secant</a>
%F A046977 A046976(n)/a(n)= A000364(n)/(2n)!.
%F A046977 Let ZBS(z) = (HurwitzZeta(z,1/4) - HurwitzZeta(z,3/4))/(2^z-2) and R(z) = (cos(z*Pi/2)+sin(z*Pi/2))*(2^z-4^z)*ZBS(1-z)/(z-1)!. Then a(n) = denominator(R(2*n+1)) and A046976(n) = numerator(R(2*n+1)). - _Peter Luschny_, Aug 25 2015
%e A046977 sec(x) = 1 + 1/2*x^2 + 5/24*x^4 + 61/720*x^6 + 277/8064*x^8 + 50521/3628800*x^10 + ...
%e A046977 sech(x) = 1 - 1/2 *x^2 + 5/24 *x^4 - 61/720 *x^6 + 277/8064 *x^8 - ...
%p A046977 ZBS := z -> (Zeta(0,z,1/4) - Zeta(0,z,3/4))/(2^z-2):
%p A046977 R := n -> (-1)^floor(n/2)*(2^n-4^n)*ZBS(1-n)/(n-1)!:
%p A046977 seq(denom(R(2*n+1)), n=0..16); # _Peter Luschny_, Aug 25 2015
%t A046977 Table[ EulerE[n]/n! // Denominator, {n, 0, 30, 2}] (* _Jean-François Alcover_, Oct 04 2012 *)
%Y A046977 Cf. A000364, A046976, A099612.
%K A046977 nonn,frac,nice,easy
%O A046977 0,2
%A A046977 _N. J. A. Sloane_