cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046985 Multiply perfect numbers whose average divisor is an integer and divides the number itself.

This page as a plain text file.
%I A046985 #24 May 09 2024 02:48:10
%S A046985 1,6,672,30240,32760,23569920,45532800,14182439040,51001180160,
%T A046985 153003540480,403031236608,13661860101120,154345556085770649600,
%U A046985 9186050031556349952000,143573364313605309726720,352338107624535891640320,680489641226538823680000,34384125938411324962897920
%N A046985 Multiply perfect numbers whose average divisor is an integer and divides the number itself.
%H A046985 Amiram Eldar, <a href="/A046985/b046985.txt">Table of n, a(n) for n = 1..321</a>
%F A046985 Let s1 = sigma(k) = A000203(k) be the sum of divisors of k and s0 = d(k) = A000005(k) be the number of divisors of k. Then, k is a term if s1/k, (k * s0)/s1, and s1/s0 are all integers.
%e A046985 k = 45532800 is a term since, s0 = 384, s1 = 182131200, and the three quotients s1/k = 182131200/45532800 = 4, (k * s0)/s1 = (45532800 * 384)/182131200 = 96, and s1/s0 = 182131200/384 = 474300 are all integers.
%t A046985 q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n * d, s] && Divisible[s, d]]; Select[Range[33000], q] (* _Amiram Eldar_, May 09 2024 *)
%o A046985 (PARI) isok(n) = s1 = sigma(n); s0 = numdiv(n); !(s1 % n) && !(s1 % s0) && !((n*s0) % s1); \\ _Michel Marcus_, Dec 10 2013
%o A046985 (PARI) is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !((k * d) % s) && !(s % d);} \\ _Amiram Eldar_, May 09 2024
%Y A046985 Intersection of A003601, A007691 and A001599.
%Y A046985 Cf. A000005, A000203, A046986, A046987.
%K A046985 nonn
%O A046985 1,2
%A A046985 _Labos Elemer_
%E A046985 a(10)-a(15) from _Donovan Johnson_, Nov 30 2008
%E A046985 Edited and a(16)-a(18) added by _Amiram Eldar_, May 09 2024