This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046985 #24 May 09 2024 02:48:10 %S A046985 1,6,672,30240,32760,23569920,45532800,14182439040,51001180160, %T A046985 153003540480,403031236608,13661860101120,154345556085770649600, %U A046985 9186050031556349952000,143573364313605309726720,352338107624535891640320,680489641226538823680000,34384125938411324962897920 %N A046985 Multiply perfect numbers whose average divisor is an integer and divides the number itself. %H A046985 Amiram Eldar, <a href="/A046985/b046985.txt">Table of n, a(n) for n = 1..321</a> %F A046985 Let s1 = sigma(k) = A000203(k) be the sum of divisors of k and s0 = d(k) = A000005(k) be the number of divisors of k. Then, k is a term if s1/k, (k * s0)/s1, and s1/s0 are all integers. %e A046985 k = 45532800 is a term since, s0 = 384, s1 = 182131200, and the three quotients s1/k = 182131200/45532800 = 4, (k * s0)/s1 = (45532800 * 384)/182131200 = 96, and s1/s0 = 182131200/384 = 474300 are all integers. %t A046985 q[n_] := Module[{d = DivisorSigma[0, n], s = DivisorSigma[1, n]}, Divisible[s, n] && Divisible[n * d, s] && Divisible[s, d]]; Select[Range[33000], q] (* _Amiram Eldar_, May 09 2024 *) %o A046985 (PARI) isok(n) = s1 = sigma(n); s0 = numdiv(n); !(s1 % n) && !(s1 % s0) && !((n*s0) % s1); \\ _Michel Marcus_, Dec 10 2013 %o A046985 (PARI) is(k) = {my(f = factor(k), s = sigma(f), d = numdiv(f)); !(s % k) && !((k * d) % s) && !(s % d);} \\ _Amiram Eldar_, May 09 2024 %Y A046985 Intersection of A003601, A007691 and A001599. %Y A046985 Cf. A000005, A000203, A046986, A046987. %K A046985 nonn %O A046985 1,2 %A A046985 _Labos Elemer_ %E A046985 a(10)-a(15) from _Donovan Johnson_, Nov 30 2008 %E A046985 Edited and a(16)-a(18) added by _Amiram Eldar_, May 09 2024