This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046990 #39 Jan 02 2025 12:46:47 %S A046990 0,1,1,1,17,31,691,10922,929569,3202291,221930581,9444233042, %T A046990 56963745931,29435334228302,2093660879252671,344502690252804724, %U A046990 129848163681107301953,868320396104950823611,209390615747646519456961,28259319101491102261334882 %N A046990 Numerators of Taylor series for log(1/cos(x)). Also from log(cos(x)). %D A046990 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88. %D A046990 CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42. %D A046990 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 32, equation 32:6:3 at page 301. %H A046990 T. D. Noe, <a href="/A046990/b046990.txt">Table of n, a(n) for n = 0..100</a> %F A046990 Let q(n) = Sum_{k=0..n-1} (-1)^k*A201637(n-1,k) then a(n) = numerator((-1)^(n-1)*q(2*n)/(2*n)!). - _Peter Luschny_, Nov 16 2012 %e A046990 log(1/cos(x)) = 1/2*x^2+1/12*x^4+1/45*x^6+17/2520*x^8+31/14175*x^10+... %e A046990 log(cos(x)) = -(1/2*x^2+1/12*x^4+1/45*x^6+17/2520*x^8+31/14175*x^10+...). %p A046990 q:= proc(n) add((-1)^k*combinat[eulerian1](n-1,k), k=0..n-1) end: A046990:= n -> numer((-1)^(n-1)*q(2*n)/(2*n)!): %p A046990 seq(A046990(n),n=0..19); # _Peter Luschny_, Nov 16 2012 %t A046990 Join[{0},Numerator[Select[CoefficientList[Series[Log[1/Cos[x]],{x,0,40}], x],#!=0&]]] (* _Harvey P. Dale_, Jul 27 2011 *) %t A046990 a[n_] := Numerator[((-4)^n-(-16)^n)*BernoulliB[2*n]/2/n/(2*n)!]; a[0] = 0; Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Feb 11 2014, after _Charles R Greathouse IV_ *) %o A046990 (Sage) # uses[eulerian1 from A173018] %o A046990 def A046990(n): %o A046990 def q(n): %o A046990 return add((-1)^k*eulerian1(n-1, k) for k in (0..n-1)) %o A046990 return ((-1)^(n-1)*q(2*n)/factorial(2*n)).numer() %o A046990 [A046990(n) for n in (0..19)] # _Peter Luschny_, Nov 16 2012 %o A046990 (PARI) a(n)=numerator(((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!) \\ _Charles R Greathouse IV_, Nov 06 2013 %o A046990 (PARI) {a(n) = if( n<1, 0, my(m = 2*n); numerator( polcoeff( -log(cos(x + x * O(x^m))), m)))}; /* _Michael Somos_, Jun 03 2019 */ %Y A046990 Cf. A046991, A002430, A050970. %K A046990 nonn,easy,frac,nice %O A046990 0,5 %A A046990 _N. J. A. Sloane_