This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A046994 #36 Dec 21 2024 14:22:30 %S A046994 1,3,8,17,38,78,164,332,680,1368,2768,5552,11168,22368,44864,89792, %T A046994 179840,359808,720128,1440512,2882048,5764608,11531264,23063552, %U A046994 46131200,92264448,184537088,369078272,738172928,1476354048,2952740864,5905498112,11811061760,23622156288 %N A046994 Number of Greek-key tours on a 3 X n board; i.e., self-avoiding walks on a 3 X n grid starting in the top left corner. %D A046994 Posting by Thomas Womack (mert0236(AT)sable.ox.ac.uk) to sci.math newsgroup, Apr 21 1999. %H A046994 Robert Israel, <a href="/A046994/b046994.txt">Table of n, a(n) for n = 1..2985</a> %H A046994 Jay Pantone, Alexander R. Klotz, and Everett Sullivan, <a href="https://arxiv.org/abs/2407.18205">Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height.</a>, arXiv:2407.18205 [math.CO], 2024. %H A046994 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-4). %F A046994 a(1) = 1; a(2m) = Sum_{i = 2...2m-1} a(i) + 3*2^(m-1); a(2m+1) = Sum_{i = 2...2m} a(i) + 5*2^(m-1). %F A046994 a(n) = 11*2^(n-3) - (4 + (-1)^n)*(2^((1/4)*(2n - 7 - (-1)^n))), n >= 2. - _Nathaniel Johnston_, Feb 03 2006 %F A046994 a(n) = 2*a(n-1)+2*a(n-2)-4*a(n-3) for n>4. G.f.: x*(1+x-x^3)/(1-2*x-2*x^2+4*x^3). - _Colin Barker_, Jul 19 2012 %e A046994 On a 3 X 3 board labeled 123 456 789 (reading across rows), 125478963 is such a tour. %p A046994 A046994:=n->`if`(n=1,1,11*2^(n-3)-(4+(-1)^n)*(2^((1/4)*(2*n-7-(-1)^n)))): seq(A046994(n), n=1..30); # _Wesley Ivan Hurt_, Sep 14 2014 %t A046994 CoefficientList[Series[(1 + x - x^3)/(1 - 2 x - 2 x^2 + 4 x^3), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Sep 14 2014 *) %Y A046994 Row 3 of A378938. %Y A046994 Cf. A046995. %K A046994 nonn,walk %O A046994 1,2 %A A046994 Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr) %E A046994 More terms and formula from _Hugo van der Sanden_