This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047074 #15 Oct 30 2022 09:00:50 %S A047074 1,1,3,2,5,6,14,20,45,70,154,252,546,924,1980,3432,7293,12870,27170, %T A047074 48620,102102,184756,386308,705432,1469650,2704156,5616324,10400600, %U A047074 21544100,40116600,82907640,155117520,319929885,601080390,1237518450 %N A047074 a(n) = Sum_{i=0..floor(n/2)} T(i,n-i), array T as in A047072. %H A047074 G. C. Greubel, <a href="/A047074/b047074.txt">Table of n, a(n) for n = 0..1000</a> %t A047074 A[n_, k_]:= A[n, k]= If[k==n, 2*CatalanNumber[n-1] +2*Boole[n==0], If[k>n, Binomial[n+k-1,n] -Binomial[n+k-1,n-1], Binomial[n+k-1,k] - Binomial[n+k-1, k - 1]]]; %t A047074 A047074[n_]:= Sum[A[j, n-j], {j,0,Floor[n/2]}] +Boole[n==0]; %t A047074 Table[A047074[n], {n, 0, 50}] (* _G. C. Greubel_, Oct 29 2022 *) %o A047074 (Magma) %o A047074 b:= func< n | n eq 0 select 1 else 2*Catalan(n-1) >; %o A047074 function A(n, k) %o A047074 if k eq n then return b(n); %o A047074 elif k gt n then return Binomial(n+k-1, n) - Binomial(n+k-1, n-1); %o A047074 else return Binomial(n+k-1, k) - Binomial(n+k-1, k-1); %o A047074 end if; return A; %o A047074 end function; %o A047074 [(&+[A(j, n-j): j in [0..Floor(n/2)]]): n in [0..50]]; // _G. C. Greubel_, Oct 29 2022 %o A047074 (SageMath) %o A047074 def A047072(n, k): # array %o A047074 if (k==n): return 2*catalan_number(n-1) + 2*int(n==0) %o A047074 elif (k>n): return binomial(n+k-1, n) - binomial(n+k-1, n-1) %o A047074 else: return binomial(n+k-1, k) - binomial(n+k-1, k-1) %o A047074 def A047074(n): return sum( A047072(j, n-j) for j in range((n//2)+1) ) %o A047074 [A047074(n) for n in range(51)] # _G. C. Greubel_, Oct 29 2022 %Y A047074 Cf. A047072, A047073, A047079. %K A047074 nonn %O A047074 0,3 %A A047074 _Clark Kimberling_ %E A047074 Extra leading 1 removed by _Sean A. Irvine_, May 11 2021