This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047079 #12 Oct 30 2022 09:00:40 %S A047079 1,1,2,3,3,4,7,9,14,23,33,52,85,127,202,329,503,804,1307,2027,3250, %T A047079 5277,8263,13276,21539,33957,54638,88595,140373,226108,366481,582865, %U A047079 939622,1522487,2428517,3917412,6345929,10145769,16374126 %N A047079 a(n) = Sum_{i=0..floor(n/2)} A047072(i, n-2*i). %H A047079 G. C. Greubel, <a href="/A047079/b047079.txt">Table of n, a(n) for n = 0..1000</a> %t A047079 T[n_, k_]:= T[n, k]= If[k==n, 2*CatalanNumber[n-1] +2*Boole[n==0], If[k>n, Binomial[n+k-1,n] -Binomial[n+k-1,n-1], Binomial[n+k-1,k] -Binomial[n+k-1, k- 1]]]; %t A047079 A047079[n_]:= Sum[T[j, n-2*j], {j,0,Floor[n/2]}] +Boole[n==0]; %t A047079 Table[A047079[n], {n,0,50}] (* _G. C. Greubel_, Oct 29 2022 *) %o A047079 (Magma) %o A047079 b:= func< n | n eq 0 select 1 else 2*Catalan(n-1) >; %o A047079 function A(n, k) %o A047079 if k eq n then return b(n); %o A047079 elif k gt n then return Binomial(n+k-1, n) - Binomial(n+k-1, n-1); %o A047079 else return Binomial(n+k-1, k) - Binomial(n+k-1, k-1); %o A047079 end if; return A; %o A047079 end function; %o A047079 [(&+[A(j, n-2*j): j in [0..Floor(n/2)]]): n in [0..50]]; // _G. C. Greubel_, Oct 29 2022 %o A047079 (SageMath) %o A047079 def A047072(n, k): # array %o A047079 if (k==n): return 2*catalan_number(n-1) + 2*int(n==0) %o A047079 elif (k>n): return binomial(n+k-1, n) - binomial(n+k-1, n-1) %o A047079 else: return binomial(n+k-1, k) - binomial(n+k-1, k-1) %o A047079 def A047079(n): return sum( A047072(j, n-2*j) for j in range(((n+1)//2)+1) ) %o A047079 [A047079(n) for n in range(51)] # _G. C. Greubel_, Oct 29 2022 %Y A047079 Cf. A047072, A047073, A047074. %K A047079 nonn %O A047079 0,3 %A A047079 _Clark Kimberling_ %E A047079 Name improved by _Sean A. Irvine_, May 11 2021