This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047171 #26 Sep 09 2024 14:56:29 %S A047171 0,0,0,2,3,9,14,34,55,125,209,461,791,1715,3002,6434,11439,24309, %T A047171 43757,92377,167959,352715,646645,1352077,2496143,5200299,9657699, %U A047171 20058299,37442159,77558759,145422674,300540194,565722719,1166803109,2203961429,4537567649 %N A047171 Number of nonempty subsets of {1,2,...,n} in which exactly 1/2 of the elements are <= (n-1)/2. %C A047171 For n>=1 the number of standard Young tableaux with shapes corresponding to partitions into two distinct parts. - _Joerg Arndt_, Oct 25 2012 %H A047171 Alois P. Heinz, <a href="/A047171/b047171.txt">Table of n, a(n) for n = 0..1000</a> %F A047171 a(n) = A037952(n) - 1. Proof by Ira Gessel: Write down the number of such subsets with k elements <= (n-1)/2 as a product of two binomial coefficients, then evaluate the sum using Vandermonde's theorem. %p A047171 a:= n-> binomial(n, iquo(n-1,2))-1: %p A047171 seq(a(n), n=0..40); # _Alois P. Heinz_, Nov 17 2012 %t A047171 a[n_] := Binomial[n, Floor[(n-1)/2]]-1; a[0] = 0; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Jul 03 2015 *) %o A047171 (Magma) [0] cat [Binomial(n, Floor((n-1)/2))-1: n in [1..40]]; // _Vincenzo Librandi_, Jul 03 2015 %Y A047171 Column k=2 of A219311. - _Alois P. Heinz_, Nov 17 2012 %K A047171 nonn %O A047171 0,4 %A A047171 _Clark Kimberling_