This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047245 #56 Aug 01 2023 19:41:39 %S A047245 1,2,3,7,8,9,13,14,15,19,20,21,25,26,27,31,32,33,37,38,39,43,44,45,49, %T A047245 50,51,55,56,57,61,62,63,67,68,69,73,74,75,79,80,81,85,86,87,91,92,93, %U A047245 97,98,99,103,104,105,109,110,111,115,116,117,121,122,123 %N A047245 Numbers that are congruent to {1, 2, 3} mod 6. %C A047245 a(k)^m is a term iff {a(k) is odd and m is a nonnegative integer} or {m is in A004273}. - _Jerzy R Borysowicz_, May 08 2023 %H A047245 David Lovler, <a href="/A047245/b047245.txt">Table of n, a(n) for n = 1..10000</a> %H A047245 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1). %F A047245 From _Johannes W. Meijer_, Jun 07 2011: (Start) %F A047245 a(n) = ceiling(n/3) + ceiling((n-1)/3) + ceiling((n-2)/3) + 3*ceiling((n-3)/3). %F A047245 G.f.: x*(1+x+x^2+3*x^3)/((x-1)^2*(x^2+x+1)). (End) %F A047245 a(n) = 3*floor((n-1)/3) + n. - _Gary Detlefs_, Dec 22 2011 %F A047245 From _Wesley Ivan Hurt_, Apr 13 2015: (Start) %F A047245 a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. %F A047245 a(n) = 2*n-3 + ((2*n-3) mod 3). (End) %F A047245 From _Wesley Ivan Hurt_, Jun 13 2016: (Start) %F A047245 a(n) = 2*n - 2 - cos(2*n*Pi/3) + sin(2*n*Pi/3)/sqrt(3). %F A047245 a(3k) = 6k-3, a(3k-1) = 6k-4, a(3k-2) = 6k-5. (End) %F A047245 Sum_{n>=1} (-1)^(n+1)/a(n) = (9-2*sqrt(3))*Pi/36 + log(2+sqrt(3))/(2*sqrt(3)) - log(2)/6. - _Amiram Eldar_, Dec 14 2021 %p A047245 A047245:=n->2*n-3+((2*n-3) mod 3): seq(A047245(n), n=1..100); # _Wesley Ivan Hurt_, Apr 13 2015 %t A047245 Select[Range[0, 200], Mod[#, 6] == 1 || Mod[#, 6] == 2 || Mod[#, 6] == 3 &] (* _Vladimir Joseph Stephan Orlovsky_, Jul 07 2011 *) %t A047245 Flatten[Table[{6n + 1, 6n + 2, 6n + 3}, {n, 0, 19}]] (* _Alonso del Arte_, Jul 07 2011 *) %t A047245 Select[Range[0, 200], MemberQ[{1, 2, 3}, Mod[#, 6]] &] (* _Vincenzo Librandi_, Apr 14 2015 *) %o A047245 (Magma) [2*n-3+((2*n-3) mod 3) : n in [1..100]]; // _Wesley Ivan Hurt_, Apr 13 2015 %o A047245 (PARI) a(n) = 3*floor((n-1)/3) + n; \\ _David Lovler_, Aug 03 2022 %Y A047245 Cf. A047240, A047244, A047258 (complement). %K A047245 nonn,easy %O A047245 1,2 %A A047245 _N. J. A. Sloane_