cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A295867 Numbers of the form A000217(n)*A007494(n) that are divisible by 3.

Original entry on oeis.org

0, 9, 30, 60, 120, 189, 432, 630, 825, 1122, 1404, 2205, 2760, 3264, 3978, 4617, 6300, 7392, 8349, 9660, 10800, 13689, 15498, 17052, 19140, 20925, 25344, 28050, 30345, 33390, 35964, 42237, 46020, 49200, 53382, 56889, 65340, 70380, 74589, 80088, 84672, 95625, 102102, 107484, 114480, 120285, 134064, 142158
Offset: 0

Views

Author

Justin Gaetano, Feb 13 2018

Keywords

Examples

			For n = 1, let m = floor((6*1+4)/5) = 2, a(1) = (3*2/2)*binomial(2+1,2) = 3*3 = 9.
For n = 2, let m = floor((6*2+4)/5) = 3, a(2) = ((3*3+1)/2)*binomial(3+1,2) = 5*6 = 30.
		

Crossrefs

Programs

  • Mathematica
    Select[Array[Floor[(3 # + 1)/2] (# + 1) #/2 &, 58, 0], Divisible[#, 3] &] (* Michael De Vlieger, Feb 17 2018 *)
    LinearRecurrence[{1, 0, 0, 0, 3, -3, 0, 0, 0, -3, 3, 0, 0, 0, 1, -1}, {0, 9, 30, 60, 120, 189, 432, 630, 825, 1122, 1404, 2205, 2760, 3264, 3978, 4617, 6300}, 48] (* Robert G. Wilson v, Feb 19 2018 *)
  • PARI
    a(n) = my(k=n%5); 162/125*n^3 + if(k==0, 27/25*n^2, k==1, 459/125*n^2 + 396/125*n + 108/125, k==2, 423/125*n^2 + 339/125*n + 84/125, k==3, 297/125*n^2 + 144/125*n + 21/125, 261/125*n^2 + 111/125*n + 12/125) \\ Charles R Greathouse IV, Feb 20 2018
    
  • PARI
    concat(0, Vec(3*x*(3 + 7*x + 10*x^2 + 20*x^3 + 23*x^4 + 72*x^5 + 45*x^6 + 35*x^7 + 39*x^8 + 25*x^9 + 33*x^10 + 8*x^11 + 3*x^12 + x^13) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)^3) + O(x^60))) \\ Colin Barker, Mar 01 2018

Formula

Let m = floor((6*n+4)/5), a(n) = (3*m/2)*binomial(m+1,2) if m is even, otherwise ((3*m+1)/2)*binomial(m+1,2).
Conjectures from Colin Barker, Feb 15 2018: (Start)
G.f.: 3*x*(3 + 7*x + 10*x^2 + 20*x^3 + 23*x^4 + 72*x^5 + 45*x^6 + 35*x^7 + 39*x^8 + 25*x^9 + 33*x^10 + 8*x^11 + 3*x^12 + x^13) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)^3).
a(n) = a(n-1) + 3*a(n-5) - 3*a(n-6) - 3*a(n-10) + 3*a(n-11) + a(n-15) - a(n-16) for n>15.
(End)
Colin Barker's conjecture is true. This is a cubic quasipolynomial of order 5: a(n) = 162/125*n^3 + 27/25*n^2 if n is 0 mod 5, 162/125*n^3 + 261/125*n^2 + 111/125*n + 12/125 if n is 4 mod 5, 162/125*n^3 + 297/125*n^2 + 144/125*n + 21/125 if n is 3 mod 5, 162/125*n^3 + 423/125*n^2 + 339/125*n + 84/125 if n is 2 mod 5, and 162/125*n^3 + 459/125*n^2 + 396/125*n + 108/125 if n is 1 mod 5. Generally a(n) = 162/125*n^3 + O(n^2). - Charles R Greathouse IV, Feb 20 2018
Showing 1-1 of 1 results.