cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047298 Numbers that are congruent to {1, 3, 4, 6} mod 7.

This page as a plain text file.
%I A047298 #19 Sep 08 2022 08:44:56
%S A047298 1,3,4,6,8,10,11,13,15,17,18,20,22,24,25,27,29,31,32,34,36,38,39,41,
%T A047298 43,45,46,48,50,52,53,55,57,59,60,62,64,66,67,69,71,73,74,76,78,80,81,
%U A047298 83,85,87,88,90,92,94,95,97,99,101,102,104,106,108,109,111
%N A047298 Numbers that are congruent to {1, 3, 4, 6} mod 7.
%H A047298 Vincenzo Librandi, <a href="/A047298/b047298.txt">Table of n, a(n) for n = 1..1000</a>
%H A047298 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F A047298 a(n) = ceiling(ceiling((7n + 2)/2)/2).
%F A047298 G.f.: x*(1+2*x+x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - _R. J. Mathar_, Oct 25 2011
%F A047298 From _Wesley Ivan Hurt_, May 22 2016: (Start)
%F A047298 a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
%F A047298 a(n) = i^(-n)*(i-1-7*i^n+14*n*i^n-(1+i)*i^(2n)+i^(-n))/8 where i=sqrt(-1).
%F A047298 a(2n) = A047280(n), a(2n-1) = A047346(n). (End)
%F A047298 E.g.f.: (4 + sin(x) - cos(x) + (7*x - 4)*sinh(x) + (7*x - 3)*cosh(x))/4. - _Ilya Gutkovskiy_, May 23 2016
%p A047298 A047298:=n->I^(-n)*(I-1-7*I^n+14*n*I^n-(1+I)*I^(2*n)+I^(-n))/8: seq(A047298(n), n=1..100); # _Wesley Ivan Hurt_, May 22 2016
%t A047298 Table[I^(-n)*(I-1-7I^n+14n*I^n-(1+I)*I^(2n)+I^(-n))/8, {n, 80}] (* _Wesley Ivan Hurt_, May 22 2016 *)
%t A047298 LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 4, 6, 8}, 80] (* _Vincenzo Librandi_, May 24 2016 *)
%o A047298 (Magma) [n : n in [0..150] | n mod 7 in [1, 3, 4, 6]]; // _Wesley Ivan Hurt_, May 22 2016
%Y A047298 Cf. A047280, A047346.
%K A047298 nonn,easy
%O A047298 1,2
%A A047298 _N. J. A. Sloane_
%E A047298 More terms from _Wesley Ivan Hurt_, May 22 2016