This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047347 #26 Sep 08 2022 08:44:57 %S A047347 0,1,4,7,8,11,14,15,18,21,22,25,28,29,32,35,36,39,42,43,46,49,50,53, %T A047347 56,57,60,63,64,67,70,71,74,77,78,81,84,85,88,91,92,95,98,99,102,105, %U A047347 106,109,112,113,116,119,120,123,126,127,130,133,134,137,140,141 %N A047347 Numbers that are congruent to {0, 1, 4} mod 7. %H A047347 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1). %F A047347 G.f.: x^2*(1+3*x+3*x^2)/((1+x+x^2)*(x-1)^2). - _R. J. Mathar_, Oct 08 2011 %F A047347 From _Wesley Ivan Hurt_, Jun 10 2016: (Start) %F A047347 a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. %F A047347 a(n) = 7*n/3-3+4*sin(2*n*Pi/3)/(3*sqrt(3)). %F A047347 a(3k) = 7k-3, a(3k-1) = 7k-6, a(3k-2) = 7k-7. (End) %p A047347 A047347:=n->7*n/3-3+4*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047347(n), n=1..100); # _Wesley Ivan Hurt_, Jun 10 2016 %t A047347 Select[Range[0,200], MemberQ[{0,1,4}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,1,-1}, {0,1,4,7}, 100] (* _Harvey P. Dale_, Dec 05 2012 *) %o A047347 (Magma) [n : n in [0..150] | n mod 7 in [0, 1, 4]]; // _Wesley Ivan Hurt_, Jun 10 2016 %K A047347 nonn,easy %O A047347 1,3 %A A047347 _N. J. A. Sloane_