cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047362 Numbers that are congruent to {2, 3, 4, 5} mod 7.

This page as a plain text file.
%I A047362 #15 Sep 08 2022 08:44:57
%S A047362 2,3,4,5,9,10,11,12,16,17,18,19,23,24,25,26,30,31,32,33,37,38,39,40,
%T A047362 44,45,46,47,51,52,53,54,58,59,60,61,65,66,67,68,72,73,74,75,79,80,81,
%U A047362 82,86,87,88,89,93,94,95,96,100,101,102,103,107,108,109,110
%N A047362 Numbers that are congruent to {2, 3, 4, 5} mod 7.
%H A047362 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).
%F A047362 G.f.: x*(2*x^2+3*x+2)*(x^2-x+1) / ( (1+x)*(x^2+1)*(x-1)^2 ). - _R. J. Mathar_, Dec 04 2011
%F A047362 From _Wesley Ivan Hurt_, Jun 03 2016: (Start)
%F A047362 a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
%F A047362 a(n) = (14*n-7-3*(i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n))/8 where i=sqrt(-1).
%F A047362 a(2k) = A047389(k), a(2k-1) = A047348(k). (End)
%p A047362 A047362:=n->(14*n-7-3*(I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n))/8: seq(A047362(n), n=1..100); # _Wesley Ivan Hurt_, Jun 03 2016
%t A047362 Select[Range[100], MemberQ[{2,3,4,5}, Mod[#,7]]&] (* or *) LinearRecurrence[{1,0,0,1,-1}, {2,3,4,5,9}, 60] (* _Harvey P. Dale_, Oct 03 2015 *)
%o A047362 (Magma) [n : n in [0..150] | n mod 7 in [2, 3, 4, 5]]; // _Wesley Ivan Hurt_, Jun 03 2016
%Y A047362 Cf. A047348, A047389.
%K A047362 nonn,easy
%O A047362 1,1
%A A047362 _N. J. A. Sloane_