This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A047377 #29 Sep 08 2022 08:44:57 %S A047377 0,1,4,5,7,8,11,12,14,15,18,19,21,22,25,26,28,29,32,33,35,36,39,40,42, %T A047377 43,46,47,49,50,53,54,56,57,60,61,63,64,67,68,70,71,74,75,77,78,81,82, %U A047377 84,85,88,89,91,92,95,96,98,99,102,103,105,106,109,110 %N A047377 Numbers that are congruent to {0, 1, 4, 5} mod 7. %H A047377 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1). %F A047377 a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=4 and b(k)=7*2^(k-2) for k>1. - _Philippe Deléham_, Oct 25 2011 %F A047377 G.f.: x^2*(1+3*x+x^2+2*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - _R. J. Mathar_, Dec 04 2011 %F A047377 From _Wesley Ivan Hurt_, May 24 2016: (Start) %F A047377 a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. %F A047377 a(n) = (14*n-15-3*i^(2*n)+(1-i)*i^(-n)+(1+i)*i^n)/8, where i=sqrt(-1). %F A047377 a(2k) = A047383(k), a(2k-1) = A047345(k). (End) %F A047377 E.g.f.: (8 - sin(x) + cos(x) + (7*x - 6)*sinh(x) + (7*x - 9)*cosh(x))/4. - _Ilya Gutkovskiy_, May 25 2016 %p A047377 A047377:=n->(14*n-15-3*I^(2*n)+(1-I)*I^(-n)+(1+I)*I^n)/8: seq(A047377(n), n=1..100); # _Wesley Ivan Hurt_, May 24 2016 %t A047377 Table[(14n-15-3*I^(2n)+(1-I)*I^(-n)+(1+I)*I^n)/8, {n, 80}] (* _Wesley Ivan Hurt_, May 24 2016 *) %t A047377 Select[Range@ 120, MemberQ[{0, 1, 4, 5}, Mod[#, 7]] &] (* _Michael De Vlieger_, May 24 2016 *) %t A047377 a[n_] := n + Floor[(n - 1)/2] + Floor[(n - 3)/4]; %t A047377 Table[a[n], {n, 1, 64}] (* _Peter Luschny_, Dec 23 2021 *) %o A047377 (Magma) [n : n in [0..150] | n mod 7 in [0, 1, 4, 5]]; // _Wesley Ivan Hurt_, May 24 2016 %Y A047377 Cf. A030308, A047345, A047383. %K A047377 nonn,easy %O A047377 1,3 %A A047377 _N. J. A. Sloane_ %E A047377 More terms from _Wesley Ivan Hurt_, May 24 2016